Few-body resonances from finite-volume calculations

Sebastian König

FRIB TA Workshop

"Connecting bound state calculations with scattering and reactions"
NSCL, Michigan State University

June 19, 2018
P. Klos, SK, J. Lynn, H.-W. Hammer, and A. Schwenk, arXiv:1805.02029 [nucl-th]

TECHNISCHE UNIVERSITAT
DARMSTADT

Motivation

terra incognita at the doorstep...

- bound dineutron state not excluded by pionless EFT

Hammer + SK, PLB 736208 (2014)

- recent indications for a three-neutron resonance state...

Gandolfi et al., PRL 118232501 (2017)

- ... although excluded by previous theoretical work Offermann + Glöckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71044004 (2005)
- possible evidence for tetraneutron resonance

Kisamori et al., PRL 116052501 (2016)

Short (recent) history of tetraneutron states

(1) 2002: experimental claim of bound tetraneutron Marques et al., PRC 65044006
(2) 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90252501
(3) 2005: observable tetraneutron resonance excluded

Short (recent) history of tetraneutron states

(1) 2002: experimental claim of bound tetraneutron
(2) 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90252501
(3) 2005: observable tetraneutron resonance excluded
(9) 2016: RIKEN experiment: possible tetraneutron resonance
$E_{R}=\left(0.83 \pm 0.65_{\text {stat. }} \pm 1.25_{\text {syst. }}\right) \mathrm{MeV}, \Gamma \lesssim 2.6 \mathrm{MeV}$ Kisamori et al., PRL 116052501
(5) following this: several new theoretical investigations

- complex scaling \rightarrow need unphys. $T=3 / 23 \mathrm{~N}$ force or strong rescaling

Hiyama et al., PRC 93044004 (2016),; Deltuva, PLB 782238 (2018)

- incompatible predictions:

Short (recent) history of tetraneutron states

(1) 2002: experimental claim of bound tetraneutron
(2) 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90252501
(3) 2005: observable tetraneutron resonance excluded
(3) 2016: RIKEN experiment: possible tetraneutron resonance

$$
E_{R}=\left(0.83 \pm 0.65_{\text {stat. }} \pm 1.25_{\text {syst. }}\right) \mathrm{MeV}, \Gamma \lesssim 2.6 \mathrm{MeV} \quad \text { Kisamori et al., PRLL } 116052501
$$

(5) following this: several new theoretical investigations

- complex scaling \rightarrow need unphys. $T=3 / 23 \mathrm{~N}$ force or strong rescaling

Hiyama et al., PRC 93044004 (2016),; Deltuva, PLB 782238 (2018)

- incompatible predictions:

- indications for three-neutron resonance...
- ... lower in energy than tetraneutron state Gandolfi et al., PRL 118232501 (2017)

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

(2) Find complex poles in S-matrix:
e.g., Glöckle, PRC 18564 (1978); Borasoy et al., PRC 74055201 (2006);
\checkmark direct, clear signature \boldsymbol{X} technically challenging, needs analytic pot.

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

(2) Find complex poles in S-matrix:
e.g., Glöckle, PRC 18564 (1978); Borasoy et al., PRC 74055201 (2006);
\checkmark direct, clear signature \boldsymbol{X} technically challenging, needs analytic pot.
(3) Put system into periodic box!

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
\rightsquigarrow volume-dependent energies

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
\rightsquigarrow volume-dependent energies

Lüscher formalism

Physical properties encoded in the L-dependent energy levels!

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations...
- ... but can also be implemented with other methods

General bound-state volume dependence

volume dependence \leftrightarrow overlap of asymptotic wave functions

Lüscher, Commun. Math. Phys. 104177 (1986);

Volume dependence of N-body bound state

$$
\begin{aligned}
& \Delta B_{N}(L) \propto\left(\kappa_{A \mid N-A} L\right)^{1-d / 2} K_{d / 2-1}\left(\kappa_{A \mid N-A} L\right) \\
& \sim \exp \left(-\kappa_{A \mid N-A} L\right) / L^{(d-1) / 2} \text { as } L \rightarrow \infty
\end{aligned}
$$

$$
\text { (} L=\text { box size, } d \text { no. of spatial dimensions, } K_{n}=\text { Bessel function) }
$$

channel with smallest $\kappa_{A \mid N-A}$ determines asymptotic behavior

Numerical results

SK and D. Lee, PLB 779, 9 (2018)

\hookrightarrow straight lines \leftrightarrow excellent agreement with prediction

N	B_{N}	$L_{\text {min }} \ldots L_{\text {max }}$	$\kappa_{\text {fit }}$	$\kappa_{1 \mid N-1}$
$d=1, V_{0}=-1.0, R=1.0$				
2	0.356	$20 \ldots 48$	$0.59536(3)$	0.59625
3	1.275	$15 \ldots 32$	$1.1062(14)$	1.1070
4	2.859	$12 \ldots 24$	$1.539(3)$	1.541
5	5.163	$12 \ldots 20$	$1.916(21)$	1.920
$d=3, V_{0}=-5.0, R=1.0$				
2	0.449	$15 \ldots 24$	$0.6694(2)$	0.6700
3	2.916	$4 \ldots 14$	$1.798(3)$	1.814

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)_{\text {Lüscher, Nucl. Phys. B } 354531}^{2} \quad, \quad p=p(E(L))
$$

resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2}, \quad p=p(E(L))
$$

resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta), \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2}, \quad p=p(E(L))
$$

resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2}, \quad p=p(E(L))
$$

resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2}, \quad p=p(E(L))
$$

resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Effect can be very subtle in practice...

[^0]
Discrete variable representation

Needed: calculation of several few-body energy levels

- difficult to achieve with QMC methods
- direct discretization possible, but not very efficient

```
\(\hookrightarrow\) use a Discrete Variable Representation (DVR)
```

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix sparse (in $d>1$)...
- ... or implemented via Fast Fourier Transform
periodic boundary condistions \leftrightarrow plane waves as starting point

Few-body resonances from finite-volume calculations - p. 9

DVR construction

- start with some initial basis; here: $\phi_{i}(x)=\frac{1}{\sqrt{L}} \exp \left(\mathrm{i} \frac{2 \pi i}{L} x\right)$
- consider $\left(x_{k}, w_{k}\right)$ such that $\sum_{k=-N / 2}^{N / 2-1} w_{k} \phi_{i}^{*}\left(x_{k}\right) \phi_{j}\left(x_{k}\right)=\delta_{i j}$

unitary trans.

$\mathcal{U}_{k i}=\sqrt{w_{k}} \phi_{i}\left(x_{k}\right)$

DVR states

- $\psi_{k}(x)$ localized at $x_{k}, \psi_{k}\left(x_{j}\right)=\delta_{k j} / \sqrt{w_{k}}$
- note: momentum mode $\phi_{i} \leftrightarrow$ spatial mode ψ_{k}

DVR features

(1) potential energy is diagonal!

$$
\begin{aligned}
& \left\langle\psi_{k}\right| V\left|\psi_{l}\right\rangle=\int \mathrm{d} x \psi_{k}(x) V(x) \psi_{l}(x) \\
& \quad \approx \sum_{n=-N / 2}^{N / 2-1} w_{n} \psi_{k}\left(x_{n}\right) V\left(x_{n}\right) \psi_{l}\left(x_{n}\right)=V\left(x_{k}\right) \delta_{k l}
\end{aligned}
$$

- no need to evaluate integrals
- number N of DVR states controls quadrature approximation

DVR features

(1) potential energy is diagonal!

$$
\begin{aligned}
& \left\langle\psi_{k}\right| V\left|\psi_{l}\right\rangle=\int \mathrm{d} x \psi_{k}(x) V(x) \psi_{l}(x) \\
& \quad \approx \sum_{n=-N / 2}^{N / 2-1} w_{n} \psi_{k}\left(x_{n}\right) V\left(x_{n}\right) \psi_{l}\left(x_{n}\right)=V\left(x_{k}\right) \delta_{k l}
\end{aligned}
$$

- no need to evaluate integrals
- number N of DVR states controls quadrature approximation
(2) kinetic energy is simple (via FFT) or sparse (in $d>1$)!
- plane waves ϕ_{i} are momentum eigenstates $\rightsquigarrow \hat{T}\left|\psi_{k}\right\rangle \sim \mathcal{F}^{-1} \otimes \hat{p}^{2} \otimes \mathcal{F}\left|\psi_{k}\right\rangle$
- $\left\langle\psi_{k}\right| \hat{T}\left|\psi_{l}\right\rangle=$ known in closed form
\hookrightarrow replicated for each coordinate, with Kronecker deltas for the rest

General DVR basis states

- construct DVR basis in simple relative coordinates...
- ... because Jacobi coord. would complicate the boundary conditions
- separate center-of-mass energy (choose $\mathbf{P}=\mathbf{0}$)
- mixed derivatives in kinetic energy operator

$$
\begin{gathered}
\mathbf{x}_{i}=\sum_{i=1}^{n} U_{i j} \mathbf{r}_{i} \\
U_{i j}=\left\{\begin{array}{lll}
\delta_{i j} & \text { for } \quad i, j<n \\
-1 & \text { for } & i<n, j=n \\
1 / n & \text { for } & i=n
\end{array}\right.
\end{gathered}
$$

General DVR state

$$
\left.|s\rangle=\mid\left(k_{1,1}, \cdots, k_{1, d}\right), \cdots,\left(k_{n-1,1}, \cdots\right) ; \text { spins }\right\rangle \in B
$$

basis size: $\operatorname{dim} B=(2 S+1)^{n} \times N^{d \times(n-1)}$

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}}=\mathcal{N} \sum_{p \in S_{n}} \operatorname{sgn}(p) D_{n}(p)|s\rangle$
- then $|s\rangle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}|s\rangle_{\mathcal{A}}=|s\rangle_{\mathcal{A}}$
- for bosons, leave out $\operatorname{sgn}(p) \rightsquigarrow$ symmetric state
- $D_{n}(p)|s\rangle=$ some other $\left|s^{\prime}\right\rangle \in B$ - modulo PBC

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}}=\mathcal{N} \sum_{p \in S_{n}} \operatorname{sgn}(p) D_{n}(p)|s\rangle$
- then $|s\rangle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}|s\rangle_{\mathcal{A}}=|s\rangle_{\mathcal{A}}$
- for bosons, leave out $\operatorname{sgn}(p) \rightsquigarrow$ symmetric state
- $D_{n}(p)|s\rangle=$ some other $\left|s^{\prime}\right\rangle \in B$ - modulo PBC

This operation partitions the orginal basis, i.e., each state appears in at most one (anti-)symmetric combination.

- efficient reduction to (anti-)symmetrized orthonormal basis
\hookrightarrow no need for numerically expensive diagonalization!
- $B \rightarrow B_{\text {reduced, }}$, significantly smaller: $N \rightarrow N_{\text {reduced }} \approx N / n$!

Note: parity (with projector $\mathcal{P}_{ \pm}=1 \pm \mathcal{P}$) can be handled analogously.

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\mathrm{DVR}}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\text {DVR }}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK) \rightsquigarrow large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
\hookrightarrow expansion/reduction via sparse matrices

(note: kinetic matrix diagonal in spin-configurations space)

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\text {DVR }}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\text {DVR }}^{6}, 4 n: 16 \times N_{\text {DVR }}^{9} \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK) \rightsquigarrow large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
\hookrightarrow expansion/reduction via sparse matrices

(note: kinetic matrix diagonal in spin-configurations space)

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\text {DVR }}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK) \rightsquigarrow large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
\hookrightarrow expansion/reduction via sparse matrices

(note: kinetic matrix diagonal in spin-configurations space)
- potential part still diagonal in symmetry-reduced basis

Broken symmetry

The finite volume breaks the symmetry of the system:

rotation group $S O(3)$

cubic group O

Irreducible representations of $S O(3)$ are reducible with respect to O !

- finite subgroup of $S O(3)$
- number of elements $=24$
- five irreducible representations

Γ	A_{1}	A_{2}	E	T_{1}	T_{2}
$\operatorname{dim} \Gamma$	1	1	2	3	3

Cubic projection

$$
\begin{aligned}
& \text { Cubic projector } \\
& \mathcal{P}_{\Gamma}=\frac{\operatorname{dim} \Gamma}{24} \sum_{R \in \mathcal{O}} \chi_{\Gamma}(R) D_{n}(R), \chi_{\Gamma}(R)=\text { character }
\end{aligned}
$$

- $D_{n}(R)$ realizes a cubic rotation R on the n-body DVR basis
- \rightsquigarrow permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N / 2, \ldots, N / 2-1$

Cubic projection

Cubic projector

$$
\mathcal{P}_{\Gamma}=\frac{\operatorname{dim} \Gamma}{24} \sum_{R \in \mathcal{O}} \chi_{\Gamma}(R) D_{n}(R), \quad \chi_{\Gamma}(R)=\text { character }
$$

- $D_{n}(R)$ realizes a cubic rotation R on the n-body DVR basis
- \rightsquigarrow permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N / 2, \ldots, N / 2-1$

numerical implementation: $\hat{H} \rightarrow \hat{H}+\lambda\left(\mathbf{1}-\mathcal{P}_{\Gamma}\right), \lambda \gg E$

Two-body check: anything goes

$$
V(r)=V_{0} \exp \left(-\left(\frac{r-a}{R_{0}}\right)^{2}\right)
$$

\hookrightarrow use barrier to produce S -wave resonance

Two-body check: anything goes

$$
V(r)=V_{0} \exp \left(-\left(\frac{r-a}{R_{0}}\right)^{2}\right)
$$

\hookrightarrow use barrier to produce S -wave resonance

Two-body check: anything goes

$$
V(r)=V_{0} \exp \left(-\left(\frac{r-a}{R_{0}}\right)^{2}\right)
$$

\hookrightarrow use barrier to produce S-wave resonance

Two-body check: anything goes

$$
V(r)=V_{0} \exp \left(-\left(\frac{r-a}{R_{0}}\right)^{2}\right)
$$

\hookrightarrow use barrier to produce S-wave resonance

finite-volume spectra

Three-body check

Take established three-body resonance from literature:

Fedorov et al., Few-Body Syst. P 33153 (2003); Blandon et al., PRA 75042508 (2007)
$V(r)=V_{0} \exp \left(-\left(\frac{r}{R_{0}}\right)^{2}\right)+V_{1} \exp \left(-\left(\frac{r-a}{R_{1}}\right)^{2}\right)$
$V_{0}=-55 \mathrm{MeV}, V_{1}=1.5 \mathrm{MeV}, R_{0}=\sqrt{5} \mathrm{fm}, R_{1}=10 \mathrm{fm}, a=5 \mathrm{fm}$

- three spinless bosons with mass $m=939.0 \mathrm{MeV}$

- two- and three-body bound states at -6.76 MeV and -37.22 MeV
- three-body resonance at $-5.31-\mathrm{i} 0.12 \mathrm{MeV}$ (Blandon et al.), $-5.96-\mathrm{i} 0.40 \mathrm{MeV}$ (Fedorove etal.)

Three-body check

Take established three-body resonance from literature:

Fedorov et al., Few-Body Syst. P 33153 (2003); Blandon et al., PRA 75042508 (2007)
$V(r)=V_{0} \exp \left(-\left(\frac{r}{R_{0}}\right)^{2}\right)+V_{1} \exp \left(-\left(\frac{r-a}{R_{1}}\right)^{2}\right)$
$V_{0}=-55 \mathrm{MeV}, V_{1}=1.5 \mathrm{MeV}, R_{0}=\sqrt{5} \mathrm{fm}, R_{1}=10 \mathrm{fm}, a=5 \mathrm{fm}$

- three spinless bosons with mass $m=939.0 \mathrm{MeV}$

- two- and three-body bound states at -6.76 MeV and -37.22 MeV
- three-body resonance at $-5.31-\mathrm{i} 0.12 \mathrm{MeV}$ (Blandon et al.), $-5.96-\mathrm{i} 0.40 \mathrm{MeV}$ (Fedrove et al.)

- fit inflection point(s) to extract resonance energy $\rightsquigarrow E_{R}=-5.32(1) \mathrm{MeV}$

Few-body resonances from finite-volume calculations - p. 18

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

\hookrightarrow possible to move three-body state \leftrightarrow spatially localized wf.

Three fermions

Consider same shifted Gaussian potential for three fermions. . .

- add spin d.o.f., but no spin dependence in potential
- \rightsquigarrow total spin S good quantum number (fix S_{z} to determine)
- also: can still consider simple cubic irreps.

$$
V_{0}=2.0, a=3.0, R=1.5
$$

- all lowest states found to be in T_{1}^{-}irrep. ($\sim \mathrm{P}$-wave state)
- some remaining volume dependence (box not very large)
- extracted $S=1 / 2$ resonance energy: $E_{R}=5.7(2)$

Four-boson resonance

Still same potential, look at four bosons...

\hookrightarrow (supposedly) narrow resonance at $E_{R}=7.31$ (8)

Summary and outlook

method established for up to four particles handle large $N_{\text {DVR }}$ for three-body systems (current record: 32)
efficient symmetrization and antisymmetrization
projection onto cubic irreps. $\left(H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda\right.$ large $)$

Summary and outlook

method established for up to four particles
handle large $N_{\text {DVR }}$ for three-body systems (current record: 32)
efficient symmetrization and antisymmetrization
projection onto cubic irreps. $\left(H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda\right.$ large $)$

Work in progress

\checkmark chiral interactions (non-diagonal due to spin dependence!)

- application to few-neutron systems
- further optimization (especially for spin-dep. potentials)
\hookrightarrow need to reach decent $N_{\text {DVR }}$ for four-neutron calculation!
- isospin degrees of freedom \rightsquigarrow treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

Summary and outlook

method established for up to four particles
handle large $N_{\text {DVR }}$ for three-body systems (current record: 32)
efficient symmetrization and antisymmetrization
projection onto cubic irreps. $\left(H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda\right.$ large $)$

Work in progress

\checkmark chiral interactions (non-diagonal due to spin dependence!)

- application to few-neutron systems
- further optimization (especially for spin-dep. potentials)
\hookrightarrow need to reach decent $N_{\text {DVR }}$ for four-neutron calculation!
- isospin degrees of freedom \rightsquigarrow treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

[^0]: Bernard et al., JHEP 0808024 (2008); Döring et al., EPJA 47139 (2011);
 Few-body resonances from finite-volume calculations - p. 8

