The No Core Gamow Shell Model: Including the Continuum in the NCSM

Bruce R. Barrett University of Arizona, Tucson

TA The university
تs. Of ARIZONA.

Arizona's First University.

COLLABORATORS

Christian Forssen, Chalmers U. of Tech., Goteborg, Sweden
Nicolas Michel, NSCL, Michigan State University
George Papadimitriou, Lawrence Livermore National Lab
Marek Ploszajczak, GANIL, Caen, France
Jimmy Rotureau, NSCL, Michigan State University

OUTLINE

I. Introduction: NCSM to the NCGSM

II. NCGSM Formalism
III. NCGSM: Applications to Light Nuclei
IV. Summary and Outlook

I. Introduction: NCSM to the NCGSM

No Core Shell Model

"Ab Initio" approach to microscopic nuclear structure calculations, in which all $\underline{\text { A }}$ nucleons are treated as being active.

Want to solve the A-body Schrödinger equation

$$
H_{A} \Psi^{\mathrm{A}}={ }_{\mathrm{A}} \mathrm{E}^{\mathrm{A}} \Psi
$$

P. Navrátil, J.P. Vary, B.R.B., PRC 62, 054311 (2000)
P. Navratil, et al., J.Phys. G: Nucl. Part. Phys. 36, 083101 (2009) B.R.B., P. Navratil and J.P. Vary, PPNP 69, 131 (2013)

Light drip line nuclei

Nuclei: open quantum systems

Closed Quantum System

(low lying states near the valley of stability)

infinite well

nice mathematical properties: analytical solution... etc

Open quantum system (weakly bound nuclei far away from stability)

II. NCGSM Formalism

Theories that incorporate the continuum, selected references

Real Energy Continuum Shell Model

- U.Fano, Phys.Rev.124, 1866 (1961)
- A.Volya and V.Zelevinsky PRC 74, 064314 (2006)

Shell Model Embedded in Continuum (SMEC)

- J. Okolowicz.,et al, PR 374, 271 (2003)
- J. Rotureau et al, PRL 95042503 (2005)

Complex Energy Gamow Shell Model

- N. Michel et al., Phys. Rev. C67, 054311 (2003)
- G. Hagen et al, Phys. Rev. C71, 044314 (2005)
- J.Rotureau et al PRL 97110603 (2006)
- N. Michel et al, J.Phys. G: Nucl.Part.Phys 36, 013101 (2009)
- G.P et al PRC(R) 84, 051304 (2011)

Selected References (continued):

NCSM/Resonating Group Method

S. Quaglioni and P. Navratil, Phys. Rev. C 79, 044606 (2009)
S. Baroni, P. Navratil, and S. Quaglioni, Phys. Rev. Lett. 110, 022505; Phys. Rev. C 87, 034326 (2013).

Coupled Cluster approach/Berggren basis
G. Hagen, et al., Phys. Lett. B 656, 169 (2007)
G. Hagen, T. Papenbrock, and M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2013)

Green's Function Monte Carlo approach
K. M. Nollett, et al., Phys. Rev. Lett. 99, 022502 (2007)
K. M. Nollett, Phys. Rev. C 86, 044330 (2012)

Resonant and non-resonant states (how do they appear?)

$$
\begin{aligned}
& u_{l}(k, r) \sim C_{+} H_{l}^{+}(k, r), r \rightarrow \infty \text { bound states, resonances } \\
& u_{l}(k, r) \sim C_{+} H_{l}^{+}(k, r)+C_{-} H_{l}^{-}(k, r), r \rightarrow \infty \text { scattering states }
\end{aligned}
$$

The Berggren basis (cont'd)

The eigenstates of the 1 b
T.Berggren (1968) Shrödinger equation form a complete basis, IF: we also consider the L_{+}scattering states

$$
\begin{aligned}
& \sum\left|u_{\text {res }}\right\rangle\left\langle u_{\text {res }}\right|+\int_{L^{+}} d k\left|u_{k}\right\rangle\left\langle u_{k}\right|=1 \\
& \left\lvert\, \begin{array}{l}
\text { are complex continuum states }
\end{array}\right. \\
& \left|u_{k}\right\rangle \begin{array}{l}
\text { along the L+ contour } \\
\text { (they satisfy scattering b.c) }
\end{array}
\end{aligned}
$$

The shape of the contour is arbitrary, but it has to be below the resonance(s) position(s) (proof by T. Berggren)

In practice the continuum is discretized via a quadrature rule (e.g Gauss-Legendre):

$$
\sum\left|u_{r e s}\right\rangle\left\langle u_{r e s}\right|+\sum_{i}\left|u_{k i}\right\rangle\left\langle u_{k i}\right| \simeq 1 \quad \text { with } \quad\left|u_{k}\right\rangle=\sqrt{\omega_{i}}\left|u_{k i}\right\rangle
$$

Berggren's Completeness relation and Gamow Shell Model

$$
\sum\left|u_{\text {res }}\right\rangle\left\langle u_{\text {res }}\right|+\int_{L^{+}} d k\left|u_{k}\right\rangle\left\langle u_{k}\right|=1
$$

The GSM in 4 steps

Hermitian Hamiltonian
Many-body $\left|S D_{i}\right\rangle$ basis
Hamiltonian matrix is built (complex symmetric):

$$
\left|S D_{i}\right\rangle=\left|u_{i 1 \ldots \ldots} \quad u_{i A}\right\rangle
$$

$$
\langle S D| H|S D\rangle
$$

Hamiltonian diagonalized

$$
|\Psi\rangle=\sum_{n} c_{n}\left|S D_{n}\right\rangle
$$

Many body correlations and coupling to continuum are taken into account simultaneously

- truncation with the density matrix :

$$
\rho_{c, c^{\prime}}^{J_{c}}=\sum_{p} \Psi_{p c} \Psi_{p c^{\prime}}
$$

$$
\longrightarrow \begin{aligned}
& \mathrm{N}_{\text {opt }} \text { states that correspond to the largest } \\
& \text { eigenvalues of the density matrix are kept }
\end{aligned}
$$

- The process is reversed...
- In each step (shell added) the Hamiltonian is diagonalized and $\mathrm{N}_{\mathrm{opt}}$ states are kept.
- Iterative method to take into account all the degrees of freedom in an effective manner.
- In the end of the process the result is the same with the one obtained by "brute" force diagonalization of H .

Density Matrix Renormalization Group - Examples -
(GSM with a ${ }^{4} \mathrm{He}$ core)
J.Rotureau et al PRC 79 (2009) 014304

${ }^{7}$ Li: 3 nucleons outside ${ }^{4} \mathrm{He}$.
Max dim in DMRG: ~1400
19% of the full space space

$$
\begin{aligned}
& \left|1-\mathcal{R} e\left(\sum_{i=1}^{N_{\rho}} w_{i}\right)\right|<e \\
& \sum_{\alpha} w_{\alpha}=1
\end{aligned}
$$

Small $\varepsilon \rightarrow$ more states of ρ are kept in each step

$$
\begin{equation*}
H=\frac{1}{A} \sum_{i<j}^{A} \frac{\left(\vec{p}_{i}-\vec{p}_{j}\right)^{2}}{2 m}+V_{N N, i j}+\ldots \tag{1}
\end{equation*}
$$

- Only NN forces at present
\rightarrow Argonne V18, (Wiringa, Stoks, Schiavilla PRC 51, 38, 1995)
$\rightarrow \mathrm{N}^{3}$ LO (D.R.Entem and R. Machleidt PRC(R) 68, 041001, 2003)
$\rightarrow \mathrm{V}_{\text {lowk }}$ technique used to decouple high/low momentum nodes. $\Lambda_{\text {VIowk }}=1.9 \mathrm{fm}^{-1}$
(5. Bogner et al, Phys. Rep. 386, 1, 2003)
- Basis states
$\rightarrow \mathrm{s}$ - and p -states generated by the HF potential
\rightarrow | > 1 H.O states

- Diagonalization of (1) \rightarrow Applications to ${ }^{3} \mathrm{H},{ }^{4} \mathrm{He},{ }^{5} \mathrm{He}$
III. NCGSM: Applications to Light Nuclei
S.R White PRL 69 (1992) 2863
T.Papenbrock and D.Dean J.Phys. 631 (2005) 51377 S.Pittel et al PRC 73 (2006) 014301
J.Rotureau et al PRC 79 (2009) 014304
J. Rotureau et al PRL 97 (2006) 110603
\checkmark Truncation Method applied to lattice models, spin chains, atomic nuclei....

\checkmark Iterative method: In each step $\left(\mathrm{N}_{\text {step }}\right)$ a scattering shell is added from C.
\rightarrow Hamiltonian is diagonalized and density matrix is constructed:

$$
\rho_{c, c^{\prime}}^{J_{c}}=\sum_{p} \Psi_{p c} \Psi_{p c^{\prime}}
$$

sweeping phase

sweeping until convergence is reached
Very good scaling with number of shells

Results: Triton

$$
\begin{aligned}
& \left|1-\mathcal{R} e\left(\sum_{i=1}^{N_{\rho}} w_{i}\right)\right|<e \\
& \sum_{\alpha} w_{\alpha}=1
\end{aligned}
$$

$$
E_{\text {exact }}=-7,840 \mathrm{MeV}
$$

$$
E_{\text {DMRG }\left(\varepsilon=10^{-7}\right)}=-7,832 \mathrm{MeV}
$$

Results: Triton

G.P., J.Rotureau, N. Michel, M.Ploszajczak, B. Barrett arXiv:1301.7140 PRC 88,044318 (2013)

$$
\begin{aligned}
& \mathrm{E}_{\text {Fadeev }}=-8.47 \mathrm{MeV} \\
& \mathrm{E}_{\text {ab-initio }}=-8.39 \mathrm{MeV} \text { (exact diagonalization) }
\end{aligned}
$$

$$
\text { Dim in DMRG }=2,575
$$

Dim in exact $=890,021$

Results: ${ }^{5} \mathrm{He}$ with chiral $\mathrm{N}^{3} \mathrm{LO}$ (real part)

G.Papadimitriou, J.Rotureau, B. Barrett, N. Michel, M.Ploszajczak arXiv:1301.7140 Submitted at Phys.Rev.C

>3 neutrons
> 2 protons
$>$ Pole space A:Os1/2 (p/n) + Op3/2 n resonant state
$>$ Continuum space B :
p3/2 complex continuum p1/2-s1/2 real continua
$\left.\begin{array}{l}\mathrm{d} 5 / 2-\mathrm{d} 3 / 2 \\ \mathrm{f} 5 / 2-\mathrm{f7} / 2 \\ \mathrm{~g} / 2-\mathrm{g} 9 / 2\end{array}\right]$ H.O states 97/2-99/2
> 157 s.p. states total

Dim for direct diagon: $3^{* 1} 0^{9}$
DMRG $\operatorname{dim} \sim 10^{5}$

Results: ${ }^{5} \mathrm{He}$ imaginary part (width) with chiral $\mathrm{N}^{3} \mathrm{LO}$

${ }^{5} \mathrm{He}$	HF poles
	* Op3/2 (n): $\mathrm{E}=(1.194,-0.633) \mathrm{MeV}$
	* Os1/2(p) : E= -23.291 MeV
	* 0 s1/2(n) : E=-23.999 MeV

Inclusion of $p_{3 / 2}$ complexcontinuum contour for neutron

Comparison of Position and Width of the 5He Ground State:

 Theory and ExperimentMethod Energy (MeV) Width (MeV)
NCGSM/DMRG: 1.17
"Extended" R-matrix*: 0.798 0.648
Conventional R-matrix*: 0.963 0.985
*D. R. Tilley, et al., Nucl. Phys. A 708, 3 (2002)

- Basic ingredients of the theory of direct reactions
- Useful measures of the configuration mixing in the many-body wavefunction

$$
\begin{equation*}
C=\sqrt{\frac{\Gamma \mu}{\hbar^{2} \Re(k)}} \tag{1}
\end{equation*}
$$

The ANC is extracted by fitting the tail of the overlap with a Hankel function

$$
C=0.197
$$

and from (1)

$$
\Gamma=311 \mathrm{keV}
$$

Two ways of calculating the width
a) many body diagonalization
\rightarrow Equivalent
b) from overlap function

Dimension comparison

Preliminary Results

> Similar trend with 4 H

Results as compared to experiment
http://www.tunl.duke.edu/nucldata/chain/04.shtml

4Li:
2- g.s: 3.613 MeV 「 $=2724 \mathrm{keV}$ 1-1st 3.758 MeV 「 $=3070 \mathrm{keV}$

3H: -7.92 MeV
3He: -7.12 MeV
(for the thresholds)

IV. Summary and Outlook

IV. Summary and Outlook

1. The Berggren basis is appropriate for calculations of weakly bound/unbound nuclei.
2. Berggren basis has been applied successfully in an ab-initio GSM framework --> No Core Gamow Shell Model for weakly bound/unbound nuclei.
3. Diagonalization with DMRG makes calculations feasible for heavier nuclei using Gamow states.
4. Future applications to heavier nuclei and to nuclei near the driplines.

Tetraneutron

Energy (width) of $\mathrm{J}=0^{+}$pole of the 4 n system

	$\lambda=1.7 \mathrm{fm}^{-1}$	$\lambda=1.9 \mathrm{fm}^{-1}$	$\lambda=2.1 \mathrm{fm}^{-1}$
$\mathrm{~N} 3 L O^{\mathrm{N} 2 L O}$ opt *	$7.27(3.69)$	$7.28(3.67)$	$7.28(3.69)$
$\mathrm{N} 2 L O_{\text {sat }}{ }^{*}$	$7.24(3.48)$	$7.33(3.78)$	$7.34(3.95)$
JISP16		$7.22(3.58)$	$7.27(3.55)$

- NCGSM results for 4n-system depend weakly on details of the chiral EFT interaction
- No dependence on the renormalization cutoff of the interaction \square weak dependence on the 3-, 4-body interactions

Continuum is non-perturbative

NCGSM for reaction observables

\rightarrow NCGSM is a structure method but overlap functions can be assessed.
\rightarrow Asymptotic normalization coefficients (ANCs) are of particular interest because they are observables...
(Mukhamedzanov/Kadyrov, Furnstahl/Schwenk, Jennings)
\rightarrow Astrophysical interest
(see I. Thompson and F. Nunes "Nuclear Reactions for Astrophysics:..." book)
\rightarrow ANCs computing difficulties: (see also K.Nollett and B. Wiringa PRC 83 , 041001,2011)

1) Correct asymptotic behavior is mandatory
2) Sensitivity on S1n ...

See also Okolowicz et al Phys. Rev. C85, 064320 (2012)., for properties of ANCs

Realistic two-body potentials in coordinate and momentum space

Repulsive core makes calculations difficult

Illustration on how the high momentum nodes are integrated out in the Vlowk (a) and in the SRG (b) RG methods

\rightarrow Need to decouple high/low momentum modes
\checkmark Achieved by $V_{\text {low-k }}$ or Similarity RG approaches (e.g. SRG)

Fig. from S. Bogner et al Prog.Part.Nucl.Phys.65:94;147,2010
\rightarrow Observable physics is preserved (e.g. NN phase shifts) AND calculations become easier (work with the relevant degrees of freedom)
\rightarrow One has to deal with "induced" many-body forces...

Results: Ab-initio overlaps in the NC-GSM

S. $F\left(\Lambda=1.9 \mathrm{fm}^{-1}\right)=0.62$
S.F $\left(\Lambda=2.1 \mathrm{fm}^{-1}\right)=0.66$

Overlap tail sensitive to
$S_{1 n}$
$\operatorname{ANC}\left(\Lambda=2.1 \mathrm{fm}^{-1}\right)=0.255$
$S_{1 n}\left(\Lambda=2.1 \mathrm{fm}^{-1}\right)=-1.8 \mathrm{MeV}$
$\Gamma_{\text {diagonalization }}=591 \mathrm{keV}$
$\Gamma_{\mathrm{ANC}}=570 \mathrm{keV}$

The width exhibits the correct
behavior
${ }^{5} \mathrm{He}$ wavefunction fragmented in both cases. depart from s.p. picture

Results: ${ }^{4} \mathrm{He}$ against Fadeev-Yakubovsky

$$
E_{a b-i n i t i o}=-29.15 \mathrm{MeV}
$$

$$
E_{F Y}=-29.19 \mathrm{MeV}
$$

Results: ${ }^{4} \mathrm{He}$ with chiral $\mathrm{N}^{3} \mathrm{LO}$

$H \Psi_{\alpha}=E_{\alpha} \Psi_{\alpha} \quad$ where $\quad H=\sum_{i=1}^{A} t_{i}+\sum_{i \leq j}^{A} v_{i j}$.

$$
\mathcal{H} \Phi_{\beta}=E_{\beta} \Phi_{\beta}
$$

$$
\Phi_{\beta}=P \Psi_{\beta}
$$

P is a projection operator from S into S

$$
\begin{gathered}
<\Phi_{\gamma} \mid \Phi_{\beta}>=\delta_{\gamma \beta} \\
\mathcal{H}=\sum_{\beta \epsilon \mathcal{S}}\left|\Phi_{\beta}>E_{\beta}<\Phi_{\beta}\right|
\end{gathered}
$$

From few-body to many-body

Ab initio
 No Core Shell Model

Realistic NN \& NNN forces

Effective interactions in cluster approximation

Diagonalization of
many- body Hamiltonian

Effective Hamiltonian for NCSM

Solving

$$
\mathrm{H}_{\mathrm{A}, \mathrm{a}=2} \Psi_{\mathrm{a}=2}=\mathrm{E}_{\mathrm{A}, \mathrm{a}=2} \Psi_{\mathrm{a}=2}
$$

in "infinite space" $2 n+1=450$ relative coordinates

$$
P+Q=1 ; \quad P \text { - model space; } \quad Q-\text { excluded space; }
$$

$$
\begin{aligned}
& \left.\left.E_{A, 2}^{\Omega}=U_{2} H_{A, 2}^{\Omega} U_{2}^{\dagger} \quad U_{2}=\begin{array}{|cc}
U_{2, P} & U_{2, P Q} \\
U_{2, Q P} & U_{2, Q}
\end{array}\right) \quad E_{A, 2}^{\Omega}=\begin{array}{|cc}
E_{A, 2, P}^{\Omega} & 0 \\
0 & E_{A, 2, Q}^{\Omega}
\end{array}\right) \\
& H_{A, 2}^{N_{\text {max }}, \Omega, \text { eff }}=\frac{U_{2, P}^{\dagger}}{\sqrt{U_{2, P}^{\dagger} U_{2, P}}} E_{A, 2, P}^{\Omega} \frac{U_{2, P}}{\sqrt{U_{2, P}^{\dagger} U_{2, P}}}
\end{aligned}
$$

Two ways of convergence:

1) For $P \rightarrow 1$ and fixed a: $\underset{A}{\text { Heff }} \rightarrow H_{A}$
2) For $a \rightarrow A$ and fixed $P: \underset{A}{H_{A}^{\text {eff }}, a} \rightarrow H_{A}$

Chiral effective field theory (EFT) for nuclear forces Separation of scales: low momenta $\frac{1}{\lambda}=Q \ll \Lambda_{\mathrm{b}}$ breakdown scale Λ_{b}

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt,..A. Schwenk

