

Gamow shell model with realistic nuclear forces

Furong Xu

I. Model

With-Core Gamow Shell Model (CGSM) based on realistic forces

(resonance + continuum)

II. Applications

Neutron-rich oxygen isotopes

Excitation spectra

Connecting Bound States to the Continuum Facility for Rare Isotope Beams (FRIB) June 11-22, 2018

γ-ray spectra

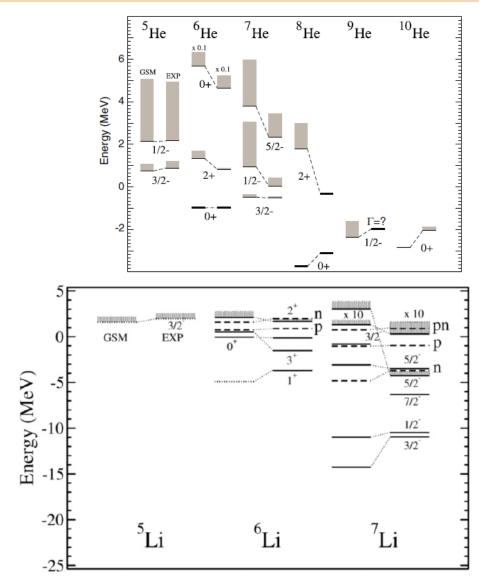
Spectra of resonance states

Energies and resonance widths against particle emissions

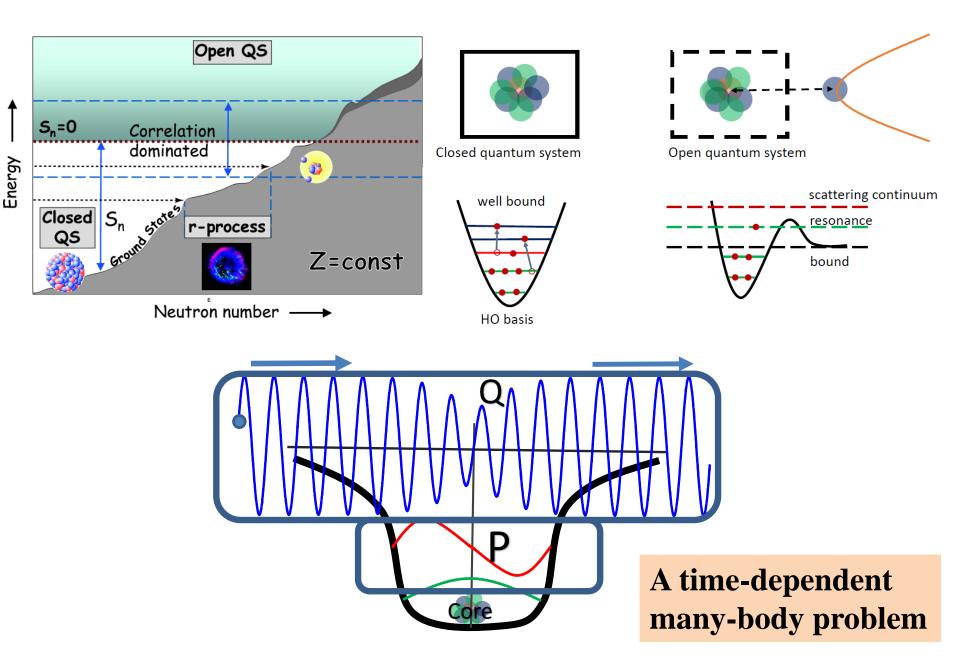
3984 (14 +594 14^{+} 3530 3390 606 556 12^{+} 2924 10+ 2834 534 10+ 2366 2299 1867 1786 1433 1315 1064 953 724 2^+ 0

¹⁸⁸Pb: prolate and oblate bands

J. Pakarinen et al., PRC 72, 011304(R) (2005)



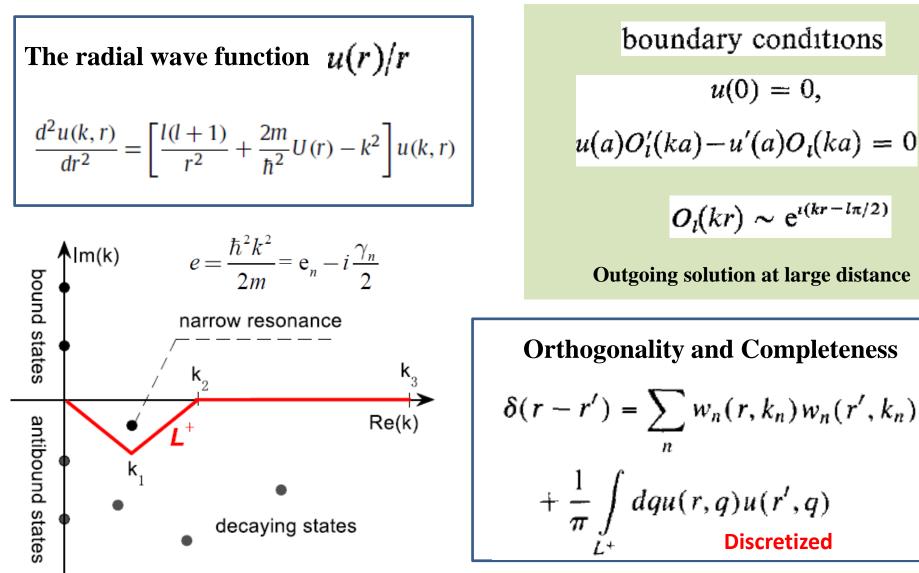
N. Michel, W. Nazarewicz, J. Okolowicz, M. Ploszjczak, Nucl. Phys. A 752, 335c (2005)



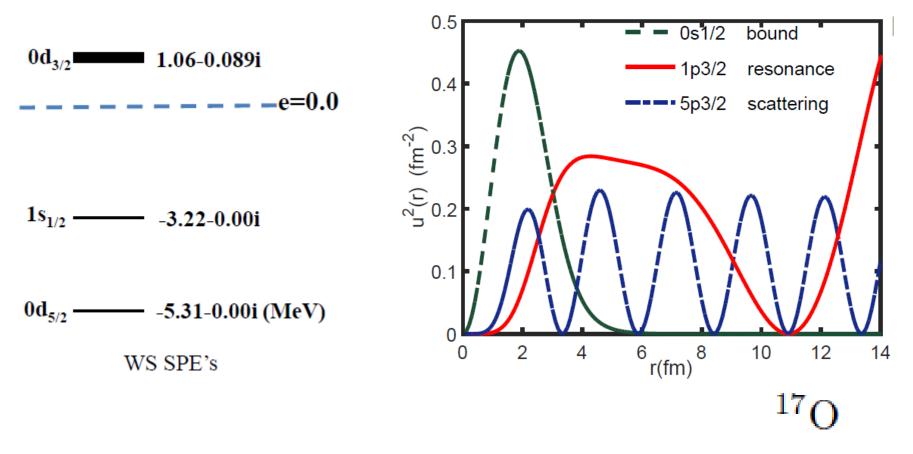
Gamow Shell Model

T. Berggren, Nucl. Phys. A109 (1968) 265

Single-particle basis in complex-k plane describe bound, resonance and scattering on equal footing.



Woods-Saxon potential, CD-Bonn, ¹⁶O core



$$e = \frac{\hbar^2 k^2}{2m} = \mathbf{e}_n - i \frac{\gamma_n}{2}$$

Details for Berggren basis, see also talks by: Nazarewicz, Sossez, Ploszajczak, Barrett, Id Betan R.J. Liotta et al., PLB 367, 1 (1996)...

used Berggren basis to describe single-particle resonance in nuclei; later for two-particle resonance (Betan *et al.*, PRL 89, 042601 (2002) using phenomenological potential

Many-body systems

$$H = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i< j=1}^{A} v_{ij}^{NN} - \frac{P^2}{2Am} \qquad P = \sum_{i=1}^{A} p_i$$

$$A = 2 \qquad (\qquad 2)$$

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + U + \sum_{i < j=1}^{N} \left(v_{ij}^{NN} - U - \frac{p_i^2}{2Am} - \frac{p_i p_j}{Am} \right)$$

$$= H_0 + V.$$

$$E = E_n - i \frac{\Gamma_n}{2}$$

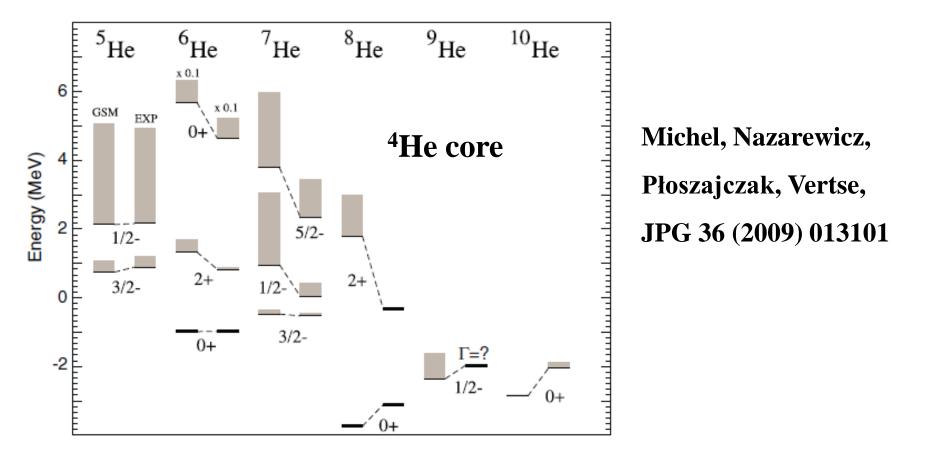
$$H_0 = \sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + U\right)$$

Michel, Nazarewicz, Ploszajczak, Rotureau et al., 2003--

$$V = V_{WS} + V_{J,T}(\mathbf{r}_1, \mathbf{r}_2)$$

$$V(\mathbf{r}_i, \mathbf{r}_j) = -V_{SGI}^{(J,T)} \exp\left[-\left(\frac{\mathbf{r}_i - \mathbf{r}_j}{\mu}\right)^2\right] \delta(r_i + r_j - 2R_0)$$

$$V_{SGI}^{(J)} \text{ is the strength in the } JT \text{ channel}$$

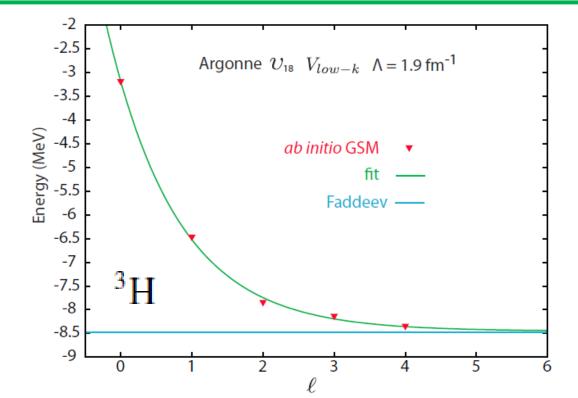


- Hagen, Hjorth-Jensen *et al.*, PRC 73, 064307 (2006): Core GSM with realistic forces, but neglecting Q-box, applied to two-particle systems (e.g., ¹⁸O)
- Later, Tsukiyama Hjorth-Jensen, Hagen, PRC 80, 051301 (R) (2009):

improving by using Q-box but no folded-diagrams.

Papadimitriou et al., Phys. Rev. C 88, 044318 (2013): realistic forces

Ab initio no-core Gamow shell model for light nuclei

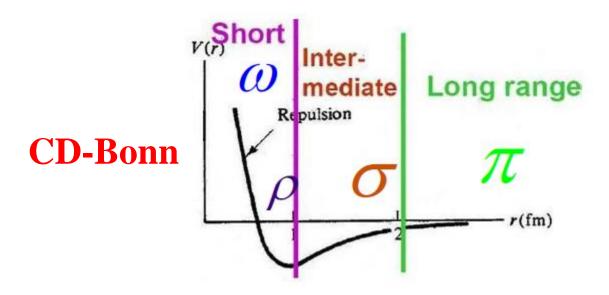


Gamow shell model with an inert core

- 1. Start from realistic forces;
- 2. Take a double magic core

Q-box + folded diagrams (MBPT)

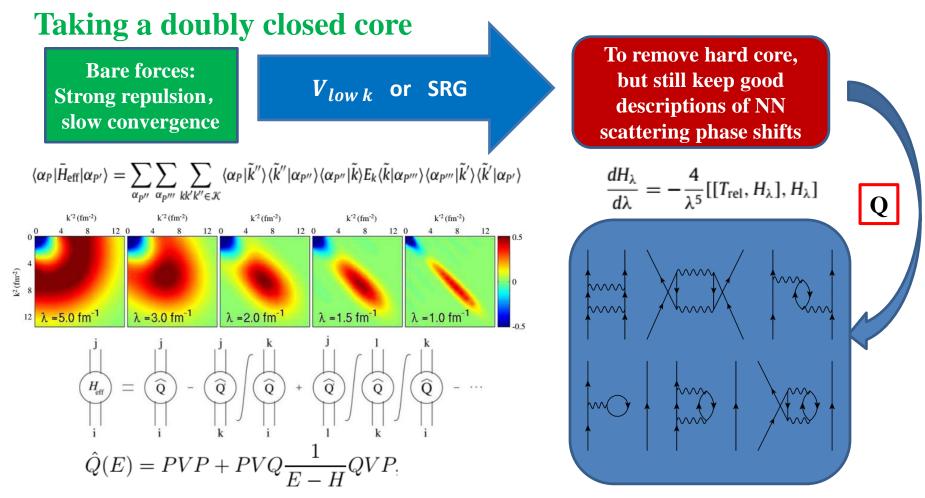
3. Calculate resonance spectra



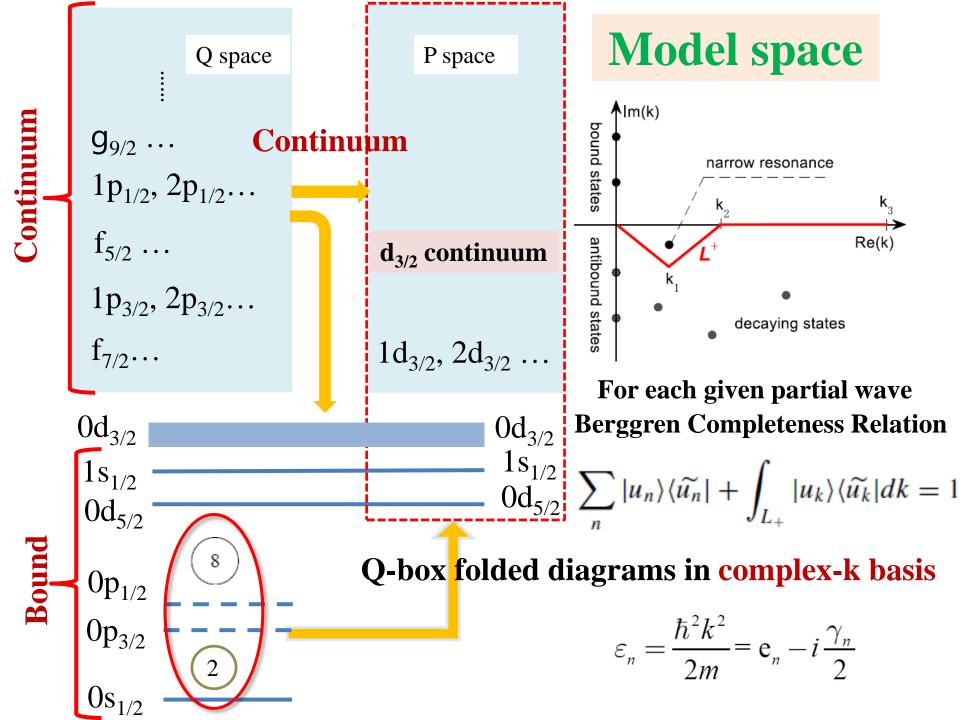
CGSM based on realistic nuclear forces

Realistic nuclear forces

Gamow shell model calculations



Non-degenerate extended Kuo-Krenciglowa folded-diagram method (EKK) by Takayanagi, NPA 852, 61 (2011);



We need to establish the effective Hamiltonian in the model space P, based on realistic forces Q-box folded diagram method in complex-energy space

1. V_{low-k}

2. Using Brody-Mshinsky brackets, NN interaction which is in relative and CoM coordinates is transferined into the laboratory (HO basis)

Truncated by $N_{shell} \sim 12$, an approximate completeness

$$\sum_{\alpha \leq \beta} |\alpha\beta\rangle \langle \alpha\beta| = 1$$

where $|\alpha\beta\rangle$ is the two-particle states in HO basis

In HO basis, NN matrix elements:

$$V_{osc} = \sum_{\alpha \le \beta} \sum_{\gamma \le \delta} |\alpha\beta\rangle \langle \alpha\beta | V_{low-k} | \gamma\delta\rangle \langle \gamma\delta |$$

In Berggren basis

$$\langle ab|V|cd\rangle \approx \sum_{\alpha \leq \beta} \sum_{\gamma \leq \delta} \langle ab|\alpha\beta\rangle \langle \alpha\beta|V_{low-k}|\gamma\delta\rangle \langle \gamma\delta|cd\rangle$$

where $|ab\rangle$ is two-particle states constructed with Berggren s.p. basis

For identical particles (pp or nn), the expansion coefficients are

$$\langle ab|\alpha\beta\rangle = \frac{\langle a|\alpha\rangle\langle b|\beta\rangle - (-1)^{J-j_{\alpha}-j_{\beta}}\langle a|\beta\rangle\langle b|\alpha\rangle}{\sqrt{(1+\delta_{ab})(1+\delta_{\alpha\beta})}}$$

For np: $\langle ab|\alpha\beta\rangle = \langle a|\alpha\rangle\langle b|\beta\rangle$

one-body expansion coefficients are calculated with

$$\langle a|\alpha\rangle = \int dr r^2 u_a(r) R_\alpha \delta_{l_a l_\alpha} \delta_{j_a j_\alpha} \delta_{t_a t_\alpha}$$

 $u_a(r)$ – Berggren basis; R_a - HO basis

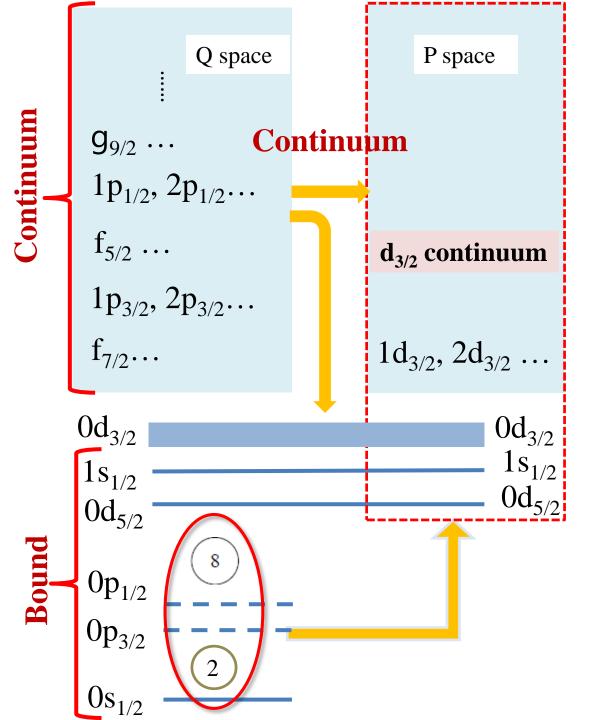
$$\begin{split} H &= \sum_{i=1}^{A} \frac{p_i^2}{2m} + U + \sum_{i < j=1} \left(v_{ij}^{NN} - U - \frac{p_i^2}{2Am} - \frac{p_i p_j}{Am} \right) \\ &= H_0 + V. \\ \frac{\frac{p_i^2}{2Am}}{\frac{p_i p_j}{Am}} & \text{using the exterior complex scaling technique} \\ \hline \hat{Q}(E) &= PVP + PVQ \frac{1}{E - QHQ} QVP \\ \hat{Q}(E) &= PVP + PV \frac{Q}{E - QH_0Q} VP + PV \frac{Q}{E - QH_0Q} VP \frac{Q}{E - QH_0Q} VP + \dots \\ &2^{\text{nd}} \text{ order perturbation} & 3^{\text{rd}} \text{ order perturbation} \\ \hline \text{In a degenerate s.p. space, E can be assumed approximately, } 2e_i, E is the starting energy \\ \hline Q\text{-box folded diagrams} & V_{eff} = \hat{Q}(\varepsilon_0) - \hat{Q}'(\varepsilon_0) \int \hat{Q}(\varepsilon_0) + \hat{Q}'(\varepsilon_0) \int \hat{Q}(\varepsilon_0) \int \hat{Q}(\varepsilon_0) \dots \\ V_{eff} &= \hat{Q}(\varepsilon_0) + \sum_{k=1}^{\infty} \hat{Q}_k(\varepsilon_0) [V_{eff}]^k \qquad \varepsilon_0 = \varepsilon_c + \varepsilon_d \qquad (\text{i.e., the starting energy E)} \end{split}$$

Q-box derivatives

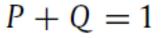
$$\hat{Q}_{k}(E) = \frac{1}{k!} \frac{d^{k} \hat{Q}(E)}{dE^{k}}$$

= $(-1)^{k} P V Q \frac{1}{(E - Q H Q)^{k+1}} Q V P$

Kuo-Krenciglowa (KK) method



Model space

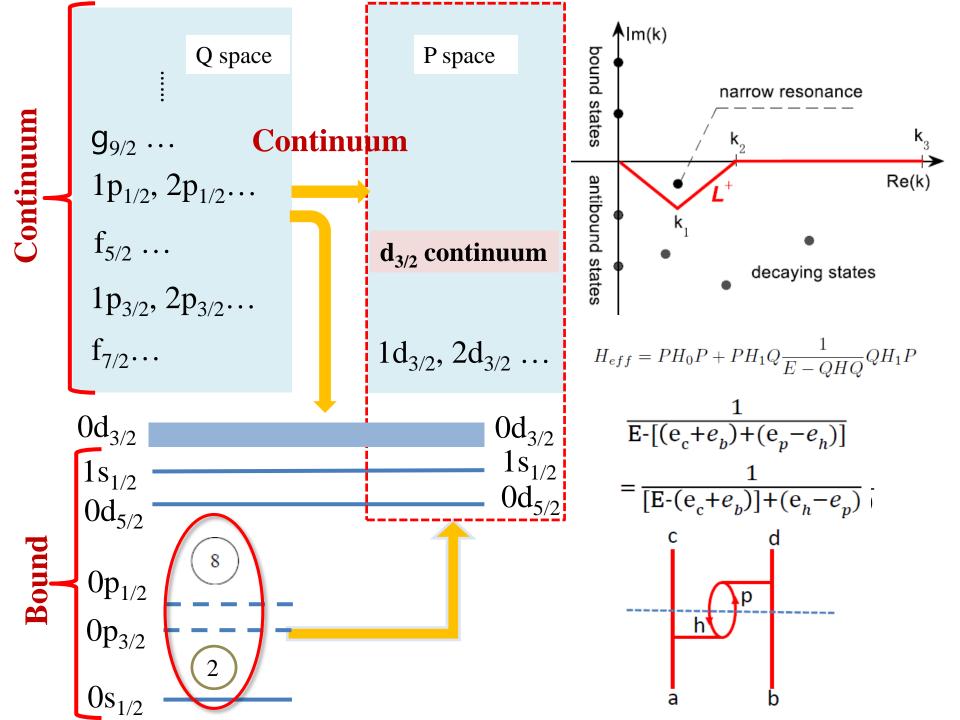


P is the model space

Q is the excluded space (including the core)

The Berggren space must be nondegenerate

Q-Box folded diagrams for nondegenerate space: Extended Kuo-Krenciglowa (EKK)



CoM correction

$$H = \sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + U \right) + \sum_{i < j} \left(v_{ij} - U - \frac{p_i^2}{2Am} - \frac{\mathbf{p_i} \cdot \mathbf{p_j}}{Am} \right)$$

Lawson method is no longer valid

Wave functions?

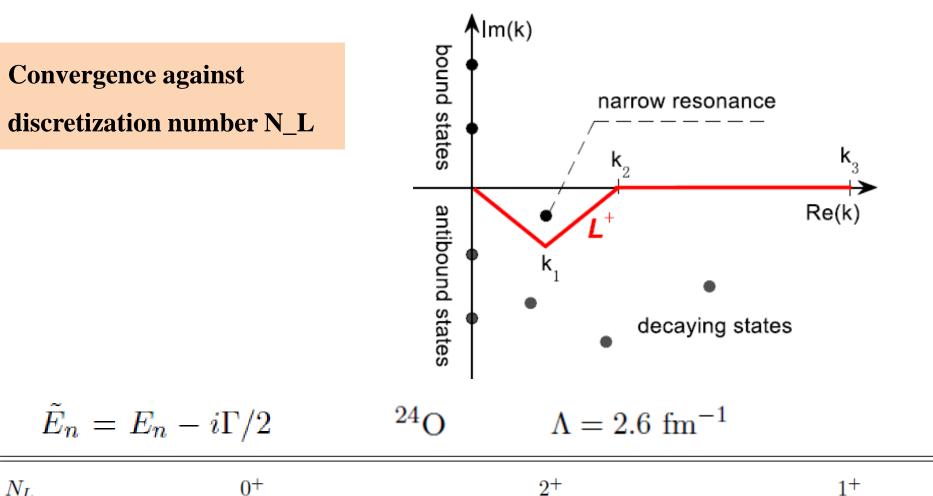
In cluster orbital coordinates (COSM): R, r_i

Y. Suzuki, K. Ikeda, RC 38, 410 (1988).

But with realistic forces:

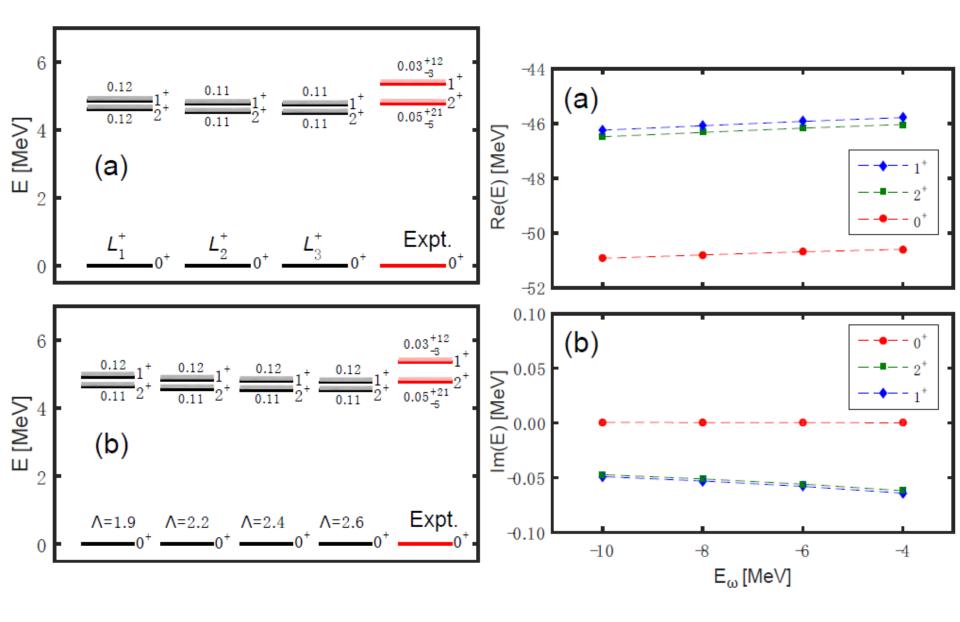
$$\langle ab|V|cd\rangle \approx \sum_{\alpha \leq \beta} \sum_{\gamma \leq \delta} \langle ab|\alpha\beta\rangle \langle \alpha\beta|V_{low-k}|\gamma\delta\rangle \langle \gamma\delta|cd\rangle$$
$$\langle ab|\alpha\beta\rangle = \langle a|\alpha\rangle \langle b|\beta\rangle \qquad \langle a|\alpha\rangle = \int dr r^2 u_a(r) R_\alpha \delta_{l_a l_\alpha} \delta_{j_a j_\alpha} \delta_{t_a t_\alpha}$$

In our CGSM calculations, for low-lying states we assume small CoM effects due to wave functions expressed in the laboratory coordinates.



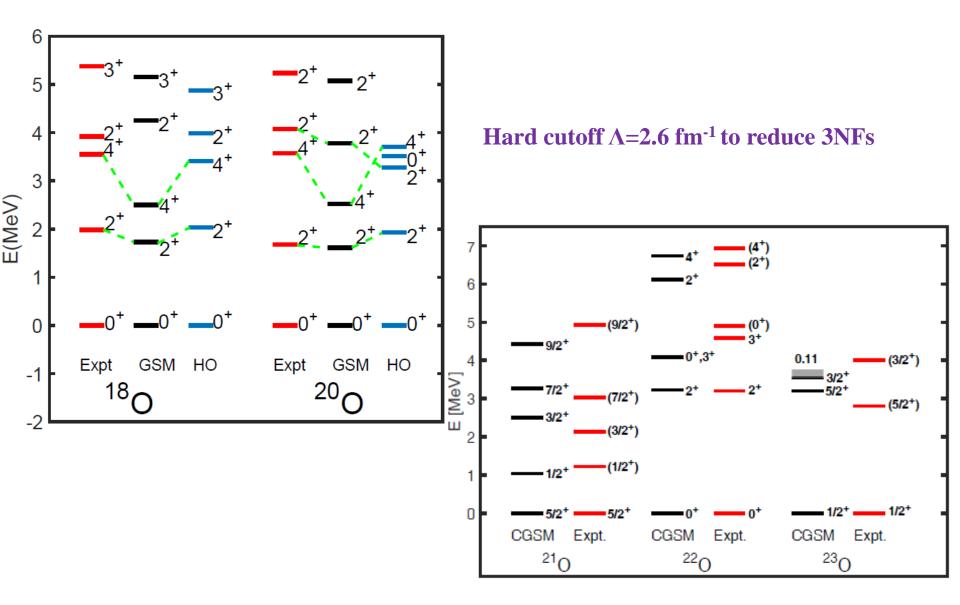
N_L	0+	2^+	1+
16	-50.642 + 0.013i	-46.172 - 0.004i	-45.922 - 0.009i
18	-50.716 + 0.002i	-46.262 - 0.046i	-46.017 - 0.049i
20	-50.711 - 0.001i	-46.219 - 0.054i	-45.976 - 0.056i
22	-50.712 + 0.000i	-46.218 - 0.053i	-45.974 - 0.056i

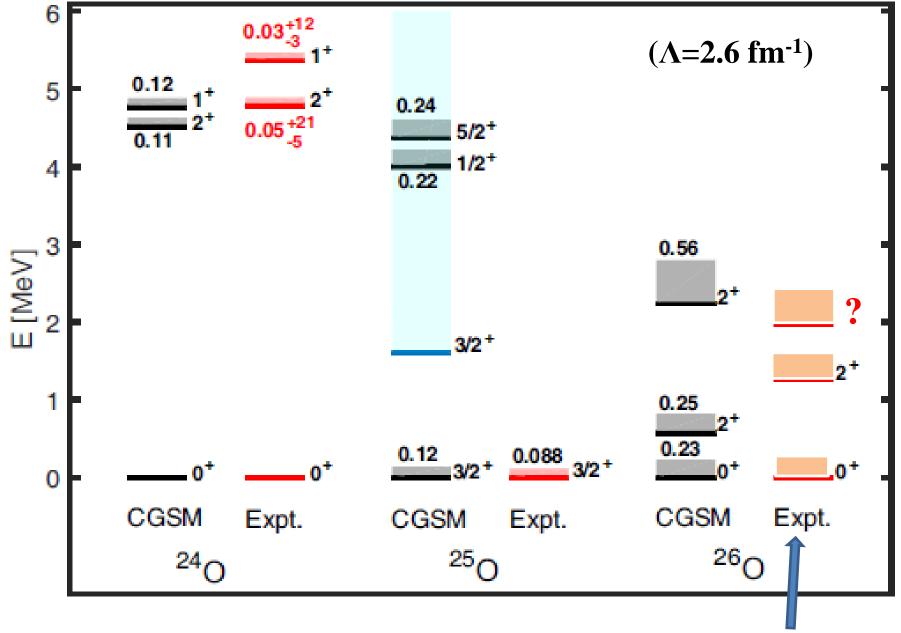
Convergences of spectroscopic calculations



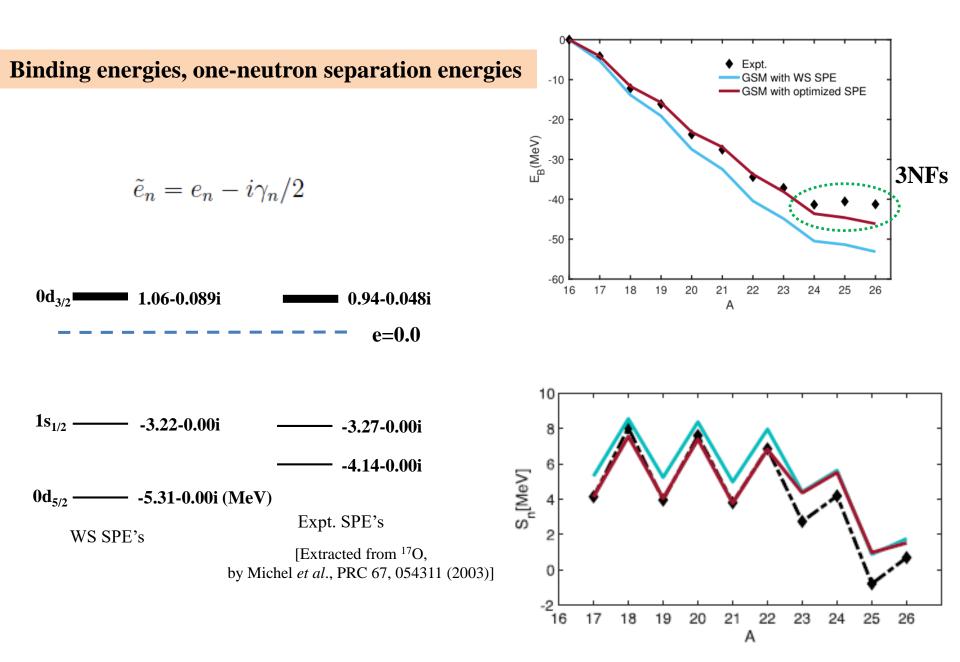
 ^{24}O

CD-Bonn CGSM, compared with conventional H.O. SM

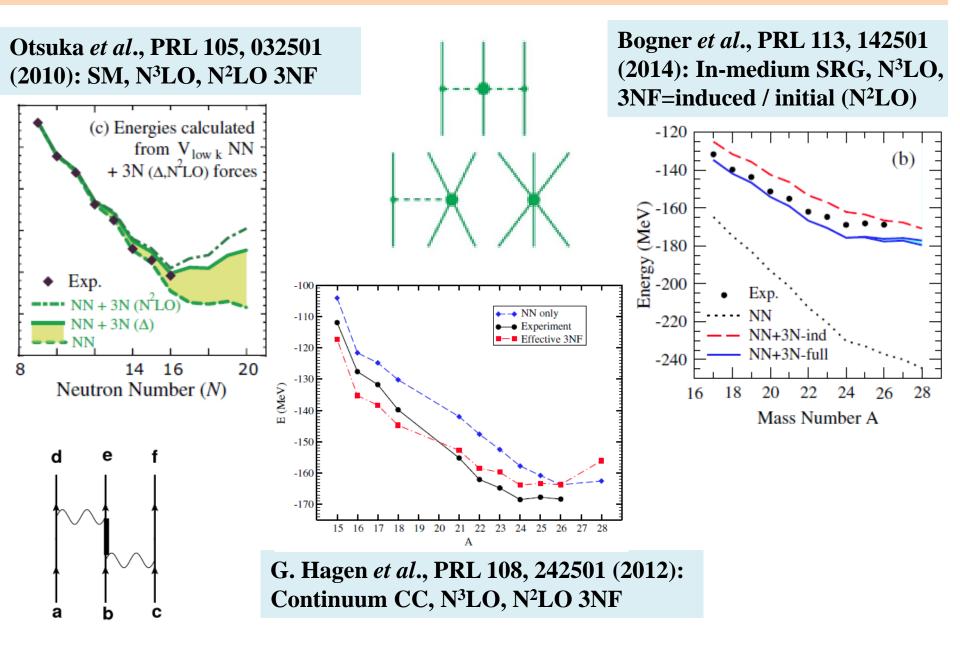




Y. Kondo et al., PRL 116, 102503 (2016)

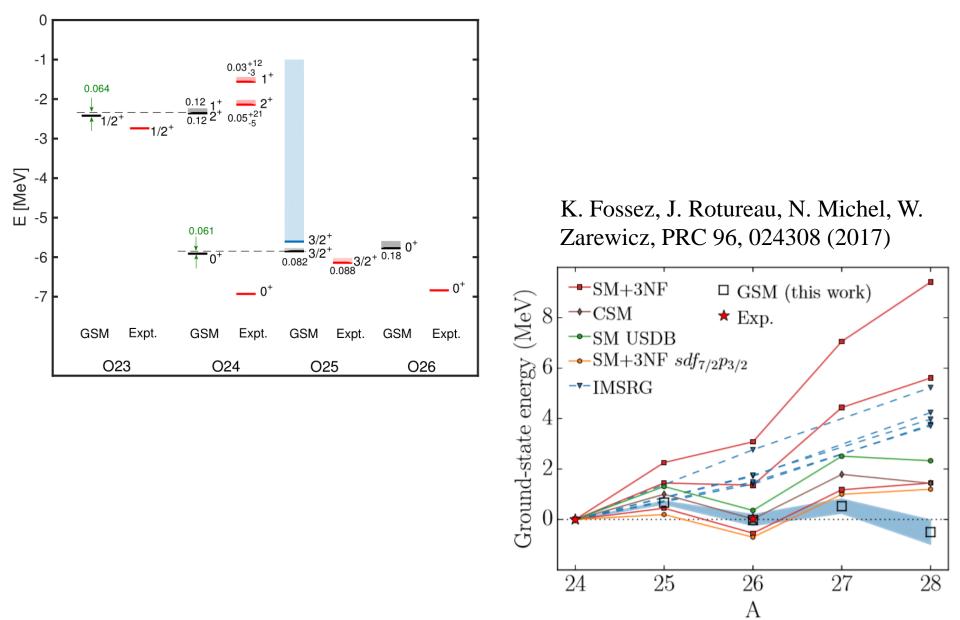


3NFs are important for binding energy calculations



3NF effects

²²O core (N=14 closed shells)



Summary

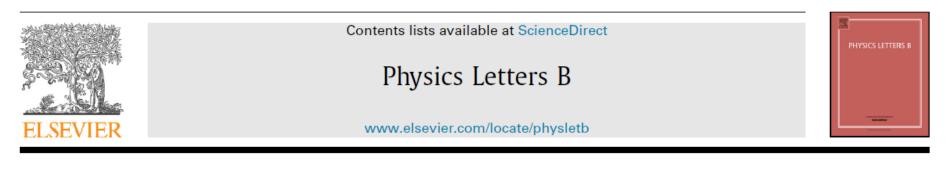
Realistic nuclear forces (CD Bonn)

Renormalization by $V_{\text{low-}k}$

Many-body solutions by CGSM

Full Q-box folded diagrams in nondegenerate complex-*k* space, which includes contributions from core polarization and excluded space.

 Successfully applied to excitation spectra of weakly-bound or unbound oxygen isotopes.



Resonance and continuum Gamow shell model with realistic nuclear forces

Z.H. Sun, Q. Wu, Z.H. Zhao, B.S. Hu, S.J. Dai, F.R. Xu*

Group members

School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

Connecting Bound States to the Continuum Facility for Rare Isotope Beams (FRIB) June 11-22, 2018