Connecting scattering with structure calculation through Improved Busch formula

Xilin Zhang
University of Washington

FRIB-Theory Alliance workshop: 'From bound states to the continuum: Connecting bound state calculations with scattering and reaction theory. '", FRIB, East Lansing, MI, June 2018

Outline

- My understanding of the issue
- Busch formula relates two-cluster spectrum in a harmonic trap to the two-cluster scattering
- Improve Busch formula: a toy model and effective field theory (EFT) generalization
- Test the formula and do a proof of principle calculation by studying $\mathrm{He}-5$ system
- Application to NN system
- Summary and outlook

Why are we here: an EFT perspective

- Nuclear structure calculation methods have been developed to study compact system
- When dealing with continuum/resonances, the large distance configuration (DOF) is hard to be included in these methods
- Meanwhile, EFT/cluster-model decrease the "resolution" scale in their descriptions, and focus on the large-distance DOF
- How to combine the two methods? (another way different from RGM)

Busch formula (infrared extrapolation)

Vs
n

Busch formula (infrared extrapolation)

Vs

Continuum
(1)

Busch formula (infrared extrapolation)

Continuum

Bound State
\qquad

Busch formula (infrared extrapolation)

Constrain EFT or model on Vs and use it to compute scattering and reaction

Ab initio
calculations

Continuum

Bound State

\square
\qquad
\qquad
\qquad

Busch formula

$$
\begin{aligned}
p^{2 l+1} \cot \delta_{l}(p)= & (-1)^{l+1}\left(4 M_{\mathrm{R}} \omega\right)^{l+\frac{1}{2}} \frac{\Gamma\left(\frac{3}{4}+\frac{l}{2}-\frac{\epsilon}{2}\right)}{\Gamma\left(\frac{1}{4}-\frac{l}{2}-\frac{\epsilon}{2}\right)} \\
\text { with } & \epsilon \equiv \frac{E}{\omega}, E \equiv \frac{p^{2}}{2 M_{\mathrm{R}}}
\end{aligned}
$$

Busch formula

Busch formula

Busch formula

$$
\begin{aligned}
p^{2 l+1} \cot \delta_{l}(p)= & (-1)^{l+1}\left(4 M_{\mathrm{R}} \omega\right)^{l+\frac{1}{2}} \frac{\Gamma\left(\frac{3}{4}+\frac{l}{2}-\frac{\epsilon}{2}\right)}{\Gamma\left(\frac{1}{4}-\frac{l}{2}-\frac{\epsilon}{2}\right)} \\
\text { with } & \epsilon \equiv \frac{E}{\omega}, E \equiv \frac{p^{2}}{2 M_{\mathrm{R}}}
\end{aligned}
$$

I) T. Luu, M. Savage, A. Schwenk, and J.Vary, PRC (20I0): NN phase shift
2) J. Rotureau, I. Stetcu, B.R. Barrett, and U. van Kolck, PRC (20I2): N-D phase shift

Busch formula

$$
\begin{aligned}
p^{2 l+1} \cot \delta_{l}(p)= & (-1)^{l+1}\left(4 M_{\mathrm{R}} \omega\right)^{l+\frac{1}{2}} \frac{\Gamma\left(\frac{3}{4}+\frac{l}{2}-\frac{\epsilon}{2}\right)}{\Gamma\left(\frac{1}{4}-\frac{l}{2}-\frac{\epsilon}{2}\right)} \\
\text { with } & \epsilon \equiv \frac{E}{\omega}, E \equiv \frac{p^{2}}{2 M_{\mathrm{R}}}
\end{aligned}
$$

Improve Busch Formula: a model

$$
V_{s}(r)= \begin{cases}+\infty & \text { when } r \leq r_{c} \\ 0 & \text { when } r>r_{c}\end{cases}
$$

Improve Busch Formula: a model

$$
\begin{gathered}
V_{s}(r)= \begin{cases}+\infty & \text { when } r \leq r_{c} \\
0 & \text { when } r>r_{c},\end{cases} \\
p^{2 l+1} \cot \delta_{l}(p)-(-1)^{l+1}\left(4 M_{\mathrm{R}} \omega\right)^{l+\frac{1}{2}} \frac{\Gamma\left(\frac{3}{4}+\frac{l}{2}-\frac{\epsilon}{2}\right)}{\Gamma\left(\frac{1}{4}-\frac{l}{2}-\frac{\epsilon}{2}\right)} \\
=-\frac{(2 l+1)!(2 l-1)!!}{r_{c}^{2 l+1}}\left[\frac{(2 l+1)\left(\frac{r_{c}}{b}\right)^{4}}{2(2 l-3)(2 l+5)}+\frac{(2 l+1)(6 l+25) \frac{1}{2}\left(p r_{c}\right)^{2}\left(\frac{r_{c}}{b}\right)^{4}}{3(2 l-5)(2 l+3)(2 l+5)(2 l+7)}+O\left[\left(\frac{r_{c}}{b}\right)^{8},\left(p r_{c}\right)^{4}\left(\frac{r_{c}}{b}\right)^{4}\right]\right] \\
\equiv-L_{a l} \frac{1}{b^{4} r_{c}^{2 l-3}}-L_{r_{l}} \frac{p^{2}}{b^{4} r_{c}^{2 l-1}}+\ldots \quad \text { Note: } b=\sqrt{\frac{1}{M_{\mathrm{R}} \omega}}
\end{gathered}
$$

Improve Busch Formula: a model

$$
\begin{aligned}
& V_{s}(r)= \begin{cases}+\infty & \text { when } r \leq r_{c} \\
0 & \text { when } r>r_{c}\end{cases} \\
& p^{2 l+1} \cot \delta_{l}(p)-(-1)^{l+1}\left(4 M_{\mathrm{R}} \omega\right)^{l+\frac{1}{2}} \frac{\Gamma\left(\frac{3}{4}+\frac{l}{2}-\frac{\epsilon}{2}\right)}{\Gamma\left(\frac{1}{4}-\frac{l}{2}-\frac{\epsilon}{2}\right)} \\
& =-\frac{(2 l+1)!!(2 l-1)!!}{r_{c}^{2 l+1}}\left[\frac{(2 l+1)\left(\frac{r_{c}}{b}\right)^{4}}{2(2 l-3)(2 l+5)}+\frac{(2 l+1)(6 l+25) \frac{1}{2}\left(p r_{c}\right)^{2}\left(\frac{r_{c}}{b}\right)^{4}}{3(2 l-5)(2 l+3)(2 l+5)(2 l+7)}+O\left[\left(\frac{r_{c}}{b}\right)^{8},\left(p r_{c}\right)^{4}\left(\frac{r_{c}}{b}\right)^{4}\right]\right] \\
& \equiv-L_{a_{l}} \frac{1}{b^{4} r_{c}^{2 l-3}}-L_{r_{l}} \frac{p^{2}}{b^{4} r_{c}^{2 l-1}}+\ldots \\
& \quad \text { Note: } b=\sqrt{\frac{1}{M_{R} \omega}}
\end{aligned}
$$

Effective range expansion (ERE):

$$
p^{2 l+1} \cot \delta_{l}(p)=-\frac{\Lambda^{2 l+1}}{a_{l}}+\frac{1}{2} r_{l} \Lambda^{2 l-1} p^{2}+\frac{1}{4} \tilde{r}_{l}^{(1)} \Lambda^{2 l-3} p^{4}
$$

Improve Busch Formula: EFT

$$
\begin{aligned}
& \mathcal{L}_{0}=\left(c^{*} n^{*}-\phi^{*}\right) \operatorname{diag}\left(i \partial_{t}-\hat{m}_{c} \psi+\frac{\partial^{2}}{2 M_{c}}, i \partial_{t}-\hat{m}_{n} \psi+\frac{\partial^{2}}{2 M_{n}}, i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}+\Delta_{0}\right)(c n \phi)^{T} \\
& \mathcal{L}_{I 0}=g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\right] \phi+\text { C.C. } \quad \text { Note: } \psi=\frac{1}{2} m_{N} \omega^{2} r^{2}
\end{aligned}
$$

Improve Busch Formula: EFT

$\mathcal{L}_{0}=\left(c^{*} n^{*}-\phi^{*}\right) \operatorname{diag}\left(i \partial_{t}-\hat{m}_{c} \psi+\frac{\partial^{2}}{2 M_{c}}, i \partial_{t}-\hat{m}_{n} \psi+\frac{\partial^{2}}{2 M_{n}}, i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}+\Delta_{0}\right)(c n \phi)^{T}$
$\mathcal{L}_{I 0}=g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\right] \phi+$ C.C . Note: $\psi=\frac{1}{2} m_{N} \omega^{2} r^{2}$
Self-energy bubble:

Dimer-field propagator:

Improve Busch Formula: EFT

$\mathcal{L}_{0}=\left(c^{*} n^{*}-\phi^{*}\right) \operatorname{diag}\left(i \partial_{t}-\hat{m}_{c} \psi+\frac{\partial^{2}}{2 M_{c}}, i \partial_{t}-\hat{m}_{n} \psi+\frac{\partial^{2}}{2 M_{n}}, i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}+\Delta_{0}\right)(c n \phi)^{T}$
$\mathcal{L}_{I 0}=g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\right] \phi+$ C.C . Note: $\psi=\frac{1}{2} m_{N} \omega^{2} r^{2}$
Self-energy bubble:

Dimer-field propagator:

$p_{\tilde{E}} \cot \delta_{0}(\tilde{E})=-\frac{2 \pi}{g_{0}^{2} M_{\mathrm{R}}}\left(\Sigma_{\omega}(\tilde{E})-\Sigma(\tilde{E})\right)$ reproduces the Busch formula.

Improve Busch Formula: EFT

$\mathcal{L}_{0}=\left(c^{*} n^{*}-\phi^{*}\right) \operatorname{diag}\left(i \partial_{t}-\hat{m}_{c} \psi+\frac{\partial^{2}}{2 M_{c}}, i \partial_{t}-\hat{m}_{n} \psi+\frac{\partial^{2}}{2 M_{n}}, i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}+\Delta_{0}\right)(c n \phi)^{T}$
$\mathcal{L}_{I 0}=g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\right] \phi+$ C.C . Note: $\psi=\frac{1}{2} m_{N} \omega^{2} r^{2}$
Self-energy bubble:

$$
\omega=\infty+\infty+\infty+
$$

Dimer-field propagator:

$$
p_{\tilde{E}} \cot \delta_{0}(\tilde{E})=-\frac{2 \pi}{g_{0}^{2} M_{\mathrm{R}}}\left(\Sigma_{\omega}(\tilde{E})-\Sigma(\tilde{E})\right) \text { reproduces the Busch formula. }
$$

Then what went wrong?

Improve Busch Formula: EFT

$$
\begin{aligned}
\mathcal{L}_{I 0}= & g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\right] \phi+\text { C.C } \\
& -\phi^{*}\left[\sum_{j=0} \sum_{k=1} d_{j, k}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\boldsymbol{\partial}^{2}}{2 M_{n c}}\right)^{j}\left(\frac{M_{\mathrm{R}}^{2}}{3 m} \boldsymbol{\partial}^{2} \psi\right)^{k}\right] \phi
\end{aligned}
$$

Improve Busch Formula: EFT

$$
\begin{aligned}
& \mathcal{L}_{I 0}=g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\right] \phi+\text { C.C } . \\
& -\phi^{*}\left[\sum_{j=0} \sum_{k=1} d_{j, k}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\left(\frac{M_{\mathrm{R}}^{2}}{3 m} \boldsymbol{\partial}^{2} \psi\right)^{k}\right] \phi \\
& +\square+\ldots+\frac{x}{+}+\ldots \quad+\ldots
\end{aligned}
$$

Improve Busch Formula: EFT

$$
\begin{array}{r}
\mathcal{L}_{I 0}=g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\boldsymbol{\partial}^{2}}{2 M_{n c}}\right)^{j}\right] \phi+\text { C.C } . \\
-\phi^{*} \underbrace{+\ldots \infty+\ldots}_{+\infty+\ldots \sum_{j=0}^{\left[\sum_{k=1} d_{j, k}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\boldsymbol{\partial}^{2}}{2 M_{n c}}\right)^{j}\left(\frac{M_{\mathrm{R}}^{2}}{3 m} \boldsymbol{\partial}^{2} \psi\right)^{k}\right]} \phi}
\end{array}
$$

The factorizability of CM motion severely constrains two-body current like couplings.

Improve Busch Formula: EFT

$$
\begin{aligned}
\mathcal{L}_{I 0}= & g_{0} \phi^{*} c n-\phi^{*}\left[\sum_{j=2} d_{j}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\partial^{2}}{2 M_{n c}}\right)^{j}\right] \phi+\text { C.C } . \\
& -\phi^{*} \underbrace{}_{+\infty+\ldots \sum_{j=0}^{\left[\sum_{k=1} d_{j, k}^{(0)}\left(i \partial_{t}-\hat{m}_{\phi} \psi+\frac{\boldsymbol{\partial}^{2}}{2 M_{n c}}\right)^{j}\left(\frac{M_{\mathrm{R}}^{2}}{3 m} \boldsymbol{\partial}^{2} \psi\right)^{k}\right]} \phi}+\ldots+\ldots+\ldots
\end{aligned}
$$

The factorizability of CM motion severely constrains two-body current like couplings.

$$
\begin{aligned}
\Sigma_{\omega} \rightarrow \Sigma_{\omega} & +\sum_{j=0} \sum_{k=1} d_{j, k}^{(0)} \tilde{E}^{j} b^{-4 k} \\
p \cot \delta_{0}(p) & \rightarrow p \cot \delta_{0}(p)+L_{a_{0}} \frac{1}{b^{4} \Lambda^{3}}+L_{r_{0}} \frac{p^{2}}{b^{4} \Lambda^{5}}+L_{\tilde{r}_{0}^{(1)}} \frac{p^{4}}{b^{4} \Lambda^{7}}+\ldots \\
& =-\frac{\Lambda}{a_{0}}+\frac{1}{2} \frac{r_{0}}{\Lambda} p^{2}+\frac{1}{4} \frac{\tilde{r}_{0}^{(1)}}{\Lambda^{3}} p^{4}+L_{a_{0}} \frac{1}{b^{4} \Lambda^{3}}+L_{r_{0}} \frac{p^{2}}{b^{4} \Lambda^{5}}+L_{\tilde{r}_{0}^{(1)}} \frac{p^{4}}{b^{4} \Lambda^{7}}
\end{aligned}
$$

Test: $\mathrm{n}-\alpha$ system

$$
V_{s}(r)=\left\{\begin{array}{lr}
V_{0}(1+\beta \boldsymbol{L} \cdot \boldsymbol{\sigma}) \text { when } r<r_{c} & V_{0}=33 \mathrm{MeV} \\
0 & \text { when } r>r_{c}
\end{array}\right.
$$

Test: $\mathrm{n}-\alpha$ system

$$
V_{s}(r)=\left\{\begin{array}{rr}
V_{0}(1+\beta \boldsymbol{L} \cdot \boldsymbol{\sigma}) \text { when } r<r_{c} & V_{0}=33 \mathrm{MeV} \\
0 & \text { when } r>r_{c}
\end{array}\right.
$$

S.Ali et.al., RMP 57, 923 (1985)

Test: $\mathrm{n}-\alpha$ system in p -wave

Test: $\mathrm{n}-\alpha$ system in p -wave

Test: $\mathrm{n}-\alpha$ system in s-wave

- 0.1 - $0.3 * 0.5 \wedge 0.7 \vee 0.9 \circ 1.1 \square 1.3 * 1.5 \triangle 1.7$
$\nabla 1.9 \bullet 2.1-2.3 \bullet 2.5 \Delta 2.7 \vee 2.9 \circ 3.1 \square 3.3 \odot 3.5$
$\Delta 3.7 \vee 3.9 \bullet 4.1$ - 5 • 67 マ 89 - 10 11 $\triangle 12$

A digression to Bayesian inference

$\operatorname{pr}\left(\boldsymbol{g},\left\{\xi_{i}\right\} \mid D ; T ; I\right)=\operatorname{pr}\left(D \mid \boldsymbol{g},\left\{\xi_{i}\right\} ; T ; I\right) \operatorname{pr}\left(\boldsymbol{g},\left\{\xi_{i}\right\} \mid I\right)$

Likelihood function

Here they are delta functions, for exact input data D

$$
\begin{aligned}
& \mathrm{T}: \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} C_{i, j}\left(\frac{b^{-4}}{\Lambda^{4}}\right)^{i}\left(\frac{p^{2}}{\Lambda^{2}}\right)^{j}=(-1)^{l+1}\left(\frac{4 M_{R} \omega}{\Lambda^{2}}\right)^{l+1 / 2} \frac{\Gamma\left(\frac{3}{4}+\frac{l}{2}-\frac{E}{2 \omega}\right)}{\Gamma\left(\frac{1}{4}-\frac{l}{2}-\frac{E}{2 \omega}\right)} \\
&\left(\frac{p^{2}}{\Lambda^{2}}\right)^{l+\frac{1}{2}} \operatorname{Cot} \delta_{l}=\sum_{j=0}^{\infty} C_{i=0, j}\left(\frac{p^{2}}{\Lambda^{2}}\right)^{j}
\end{aligned}
$$

Posterior
distribution

Prior
distribution
$3 / 2^{-}$at N6LO

$3 / 2^{-}$at N6LO

- Mean - Exact - 1- σ upper bound - 1- σ lower bound

$3 / 2^{-}$at N6LO

$3 / 2^{-}$at N6LO

$1 / 2^{-}$at N6LO

$1 / 2^{-}$at N6LO

- Mean - Exact - 1- σ upper bound - 1- σ lower bound

$1 / 2^{-}$at N6LO

\rightarrow Uncertainty/Mean \rightarrow Abs[Mean-Exact]/Exact

$1 / 2^{-}$at N6LO

$1 / 2^{+}$at N6LO

$1 / 2^{+}$at N6LO

- Mean - Exact - 1- σ upper bound - 1- σ lower bound

$1 / 2^{+}$at N6LO

$1 / 2^{+}$at N6LO

Trial results by analyzing IM-SRG "data" from G. Chan, R. Stroberg, and J. Holt

NN at N6LO

The energy spectrum are from the calculations by J.Vary et.al. [T. Luu, M. Savage, A. Schwenk, and J.Vary, PRC (2010)]

- Mean - Exact - 1- σ upper bound - 1- σ lower bound

\rightarrow Uncertainty/Mean - Abs[Mean-Exact]/Exact

NN at N6LO

The energy spectrum are from the calculations by J.Vary et.al. [T. Luu, M. Savage, A. Schwenk, and J.Vary, PRC (2010)]

- Mean - Exact - 1- σ upper bound - 1- σ lower bound

Summary and outlook

- The improved Busch formula can be used to infer scattering from structure calculation
- Test on $\mathrm{n}-\alpha$ is encouraging
- It works for NN system in the range of its validity
- Working with P. Narvatil on $\mathrm{n}-\alpha$
- Also applying it to study $n-{ }^{24} O$ with G. Chan, R. Stroberg, and J. Holt
- Consider generalizing it to study two-cluster reactions and three-cluster systems
- It would be interesting to consider the connection between this method and the infrared extrapolation used in structure calculation

