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Content

§ R-Matrix theory

§ Resonating Group Method
— Implemented within the no-

core shell model
— No-core shell model with 

continuum

§ Generator Coordinate 
Method

§ Microscopic R-Matrix 
combined with Density 
Functional Theory

Elements of the Scattering Matrix

Cross Sections

Microscopic Theory 
of Nuclear Forces & 

Nuclear Structure

?
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R-Matrix theory provides a rigorous framework for 
bridging ab initio many-body and collision theory

Elements of the Scattering Matrix

Cross Sections

Known interactions
in external region

(Coulomb functions)

Projectile-Target
interactions in the

internal Region

External region

0 a r

Internal region
V =V

N
+V

Coul V =VCoul

r
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R-Matrix theory provides a rigorous framework for 
bridging ab initio many-body and collision theory

Scattering wave functions at
surface of interaction region
parameterized by R-Matrix

Elements of the Scattering Matrix

Cross Sections

Known interactions
in external region

(Coulomb functions)

Projectile-Target
interactions in the

internal Region
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In its phenomenological incarnation experimental cross 
sections are fitted in terms of the R-matrix parameters

Set of parameters 
completely defining

the R-matrix 
Phenomenological R-Matrix:

Vary parameters 
until best fit 
of experimental 
cross sections

Elements of the Scattering Matrix

Cross Sections

Known interactions
in external region

(Coulomb functions)

Projectile-Target
interactions in the

internal Region
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The values and proper/es of the R-matrix parameters 
can be predicted on the basis of a microscopic theory

Microscopic Theory 
of Nuclear Forces &
Nuclear Structure

Microscopic R-Matrix:


r

Need an approach 
to describe dynamics
between clusters
of nucleons

e.g.: Resonating Group Method
Elements of the Scattering Matrix

Cross Sections

Known interactions
in external region

(Coulomb functions)

Projectile-Target
interactions in the

internal Region
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Binary Cluster Resonating Group Method

A− a( )
a( )


r
A−a,a

§ Trial wave function (                                                  ):ν ≡ A− a α
1
I
1

π1T
1
;a α

2
I
2

π2T
2
;s{ }

Relative 
vector


r
A−a,a
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Binary Cluster Resonating Group Method

A− a( )
a( )


r
A−a,a

§ Trial wave function (                                                  ):

§ Target and projectile wave functions are both translational invariant

ν ≡ A− a α
1
I
1

π1T
1
;a α

2
I
2

π2T
2
;s{ }

ψ J
π
T
=

gν
J
π
T
(r)

r
Âν A− a α

1
I
1

π1T
1
a α

2
I
2

π2T
2( )

(sT )

Y

(r̂A−a,a )







(J
π
T ) δ(r − rA−a,a )

rrA−a,a
∫

ν

∑ r
2
dr

Φνr

J
π
T (Jacobi) channel basis

Translational 
invariant

channel basis
=
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Binary Cluster Resonating Group Method

A− a( )
a( )


r
A−a,a

§ Trial wave function (                                                  ):

§ Antisymmetrizes wave function for exchanges of nucleons across clusters

§ Note that             changes under the action of the antisymmetrizer

ν ≡ A− a α
1
I
1

π1T
1
;a α

2
I
2

π2T
2
;s{ }

Inter-cluster
antisymmetrizer


r
A−a,a



LLNL-PRES-753015
10

Binary Cluster Resonating Group Method

A− a( )
a( )


r
A−a,a

Trial wave func0on (                                                  ):§ ν ≡ A− a α
1
I
1

π1T
1
;a α

2
I
2

π2T
2
;s{ }

Unknown 
amplitudes

Hamiltonian kernel Overlap (or norm) kernel

RGM
equations
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§ The RGM equations can be orthogonalized (see PRC 79, 044606)

— This removes the energy dependence from the ‘effective’ projectile-
target potential (see below) 

§ In the end, one is left with a set of integral-differential coupled channel 
equations with a non-local potential of the type:

Solving the RGM equa2ons …

d ′r ′r 2 N
−1
2HN

−1
2



ν ′ν
(r, ′r )

u ′ν ( ′r )

′r
∫

′ν

∑ = E
uν (r)

r

T
rel
(r)+V

Coul
(r)− (E −εα1 −εα2 )

 uν (r)+ d ′r ′r Wν ′ν (r, ′r ) u ′ν ( ′r )∫
′ν

∑ = 0

Ev
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… with the R-Matrix method

Expansion on a basis
(square-integrable)

Bound state asymptotic behavior

Scattering state asymptotic behavior

External region

0 a r

Internal region
V =V

N
+V

Coul V =VCoul

r

c

uc (r) = Acn fn (r)
n
∑

uc (r) =CcW (kcr)

uc (r) =
i
2
vc
−12 δciIc (kcr)− SciOc (kcr)[ ]
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… with the R-Matrix method

§ R-matrix formalism conveniently expressed with the help of the Bloch 
surface operator

§ System of Bloch-Schrödinger equations:

  

€ 

L = c L
c
c

c

∑ with L
c

=

2

2µ
c

δ(r − a)
d

dr
−
B
c

r

 

 
 

 

 
 

Boundary 
parameters

€ 

ˆ T 
rel

(r) + L
c

+ V 
Coul

(r) − (E − E
c
)[ ]uc

(r) + dr'r'W
cc '

(r,r')u
c '
(r')∫ = L

c
u

c
(r)

c'

∑

uc (r) = Acn fn (r)
n
∑ asymptotic form 

for large r
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… with the R-Matrix method

§ We can choose:

§ After projection (from the left) on the basis fn(r):

Bc = kca
!W (kca)

W (kca)
⇒ Lcuc

ext (r) = 0

Ccn,c 'n ' −E δcn,c 'n '"# $%Ac 'n '
c 'n '
∑ = 0

€ 

fn
ˆ T rel (r) + Lc + V Coul (r) fn'

δcc'
+ fn Wcc'

(r,r') fn'
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Bound states

§ We can choose:

§ After projection (from the left) on the basis fn(r):

§ Start with E = 0 and solve iteratively (kc depends on the energy!)

§ Convergence in few iterations

Bc = kca
!W (kca)

W (kca)
⇒ Lcuc

ext (r) = 0

Ccn,c 'n ' −E δcn,c 'n '"# $%Ac 'n '
c 'n '
∑ = 0 Eigenvalue problem
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Scattering states

§ We can choose:

§ After projection (from the left) on the basis fn(r):

1) Solve for Acn

2) Match  internal and external solutions at channel radius, a

Bc = 0

Ccn,c 'n ' − (E −Ec )δcn,c 'n '"# $%Ac 'n '
c 'n '
∑ =

!2kc
2µcvc

1/2 fn Lc Icδci − SciOc

Rc !c
k !c a
µ !c v !c

!I !c (k !c a)δci − S !c i !O !c (k !c a)[ ]
!c
∑ =

1
µcvc

Ic (kca)δci − SciOc (kca)[ ]
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Scattering states

In the process introduce R§ -matrix, projec8on of the Green’s func8on 
operator on the channel-surface func8ons

Solve for the sca?ering matrix:3)

with:

Phase shiFs, cross sec8ons are computed from the sca?ering matrix§

  

€ 

Rcc' =


2µca
fn (a) C − EI[ ]

cn,c'n '

−1 

2µc 'a
fn' (a)

nn '

∑

S = Z −1Z *

Z
c ′c = k ′c a( )

−1
O
c
(k

c
a)δ

c ′c − k ′c a Rc ′c ′O ′c (k ′c a)
 
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Scattering states

§ The R-matrix takes a simple pole-expansion form, in terms of energy 
levels El and (energy independent) partial widths glc

with

3) Solve for the scattering matrix:

with:

§ Phase shifts, cross sections are computed from the scattering matrix

S = Z −1Z *

Z
c ′c = k ′c a( )

−1
O
c
(k

c
a)δ

c ′c − k ′c a Rc ′c ′O ′c (k ′c a)
 

Rc !c =
γλcγλ !c

Eλ −Eλ
∑ γλc =

!
2µca

fn (a)Bcn,λ
nn '
∑ Change from

fn basis to 
eigenvectors

of matrix C
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Scattering states

§ The R-matrix takes a simple pole-expansion form, in terms of energy 
levels El and (energy independent) partial widths glc

3) Solve for the scattering matrix:

with:

§ Phase shifts, cross sections are computed from the scattering matrix

S = Z −1Z *

Z
c ′c = k ′c a( )

−1
O
c
(k

c
a)δ

c ′c − k ′c a Rc ′c ′O ′c (k ′c a)
 

Rc !c =
γλcγλ !c

Eλ −Eλ
∑ In phenomenological theory:

El and glc used as fitting parameters 
(typically use a few channels)
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Scattering states

§ The R-matrix takes a simple pole-expansion form, in terms of energy 
levels El and (energy independent) partial widths glc

3) Solve for the scattering matrix:

with:

§ Phase shifts, cross sections are computed from the scattering matrix

S = Z −1Z *

Z
c ′c = k ′c a( )

−1
O
c
(k

c
a)δ

c ′c − k ′c a Rc ′c ′O ′c (k ′c a)
 

Rc !c =
γλcγλ !c

Eλ −Eλ
∑

In ab initio theory:
El and glc computed from first principles
(typically large number of channels)
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If target and projectile are obtained within the ab initio 
NCSM, one arrives at the ab initio NCSM/RGM approach

§ Jacobi channel states in the harmonic oscillator (HO) space:

§ Notes:

• Formally, the coordinate space channel sates given by:

- I used the closure properties of HO radial wave functions

• Again: target and projectile are both translational invariant eigenstates  

- Works for the projectiles up to 4He

- Not practical if we want to describe reactions with p-shell targets!

Φνn

J
π
T
= A− a α

1
I
1

π1T
1
a α

2
I
2

π2T
2( )

(sT )

Y

(r̂
A−a,a )







(J
π
T )

R
n
(r
A−a,a )

Φνr

J
π
T
= R

n
(r)

n

∑ Φνn

J
π
T

δ(r − r
A−a,a ) = R

n
(r)R

n
(r
A−a,a )

n

∑

In practice, 
expansion 
is truncated 
and is only used 
for short-range 
components
of NCSM/RGM 
kernels
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A−1( )

a =1( )′r r

A−1( )

′a =1( )
Φ ′ν ′r

J
π
T
Â ′v Âv Φνr

J
π
T
=

An example: the RGM norm kernel 
for nucleon-nucleus channel states 

N ′v v

J
π
T
( ′r , r) = δ ′v v

δ( ′r − r)

′r r
− (A−1) R ′n ′ ( ′r )Rn(r) Φ ′ν ′n

J
π
T
P̂
A−1,A Φνn

J
π
T

′n n

∑

Direct term:
Treated exactly!
(in the full space)

Exchange term:
Obtained in the model space!
(Short-range many-body 
correction due to the 
exchange of particles )

′ν

ν

A−1( ) a =1( )

− A−1( )×

δ(r − r
A−a,a ) = R

n
(r)R

n
(r
A−a,a )

n

∑

RGM
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c.m.
motion

Define Slater-Determinant (SD) channel states in 
which the target is described by a SD eigenstates

Φνn

J
π
T

SD

= A− a α
1
I
1

π1T
1

SD

a α
2
I
2

π2T
2( )

(sT )

Y

R̂
c.m.

(a)( )







(J
π
T )

R
n
R
c.m.

(a)( )

A− a α
1
I
1

π1T
1
ϕ
00


R
c.m.

(A−a)( ) Vector proportional
to the c.m. coordinate

of the a nucleons   
Vector proportional to the c.m. 
coordinate of the A-a nucleons   


η
A−a =

(A−a)a

A


r
A−a,a( )

  

€ 

 
R 

c.m.

(a )
  

€ 

 
R 

c.m.

(A−a )

O


R
c.m.

(A)
≡


ξ
0

O


η
A−a

ϕ
00


R
c.m.

(A−a)( )ϕn


R
c.m.

(a)( )( )


= 00,n, n
r

r
,NL,

d= a

A−a
nrr ,NL

∑ ϕ
n
r

r


η
A−a( )ϕNL


ξ
0( )( )

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c.m. motion

In this ‘SD’ channel basis, translation-invariant 
matrix elements are mixed with c.m. motion …

§ More in detail:

§ The spurious motion of the c.m. is mixed with the intrinsic motion

§ Expression is general: same for different A’s or different a’s

Φνn

J
π
T

SD

= ̂Ĵ
r
(−1)s+r+L+J

s 
r

J
r

L J 












00,n, n

r

r
,NL,

d= a

A−a
nrr ,NL,Jr

∑ Φν
r
n
r

J
r

πrT ϕ
NL
(


ξ
0
)







J
π
T( )

SD
Φ "ν "n

JπT Ôt.i. Φνn
JπT

SD
= Φ "νr "nr

Jr
πrT Ôt.i. Φνrnr

Jr
πrT

"nr "ℓr ,nrℓr ,Jr

∑

×
NL
∑ ℓ̂ˆ"ℓ Ĵr

2 (−1)s+ℓ− "s − "ℓ s ℓ r Jr
L J ℓ

&
'
(

)(

*
+
(

,(

"s "ℓ r Jr
L J "ℓ

&
'
(

)(

*
+
(

,(

× 00,nℓ,ℓ nrℓ r,NL,ℓ d= a
A−a
00, "n "ℓ , "ℓ "nr "ℓ r,NL, "ℓ "d = "a

A− "a

Interested in this 

Compute these
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c.m. motion

… but they can be extracted exactly from the ‘SD’ matrix 
elements by applying the inverse of the mixing matrix 

§ More in detail:

§ The spurious motion of the c.m. is mixed with the intrinsic motion

§ For non-scalar operators the mixing matrix becomes a bit more 
complicated but it is still possible to exactly remove the c.m. motion 

Φνn

J
π
T

SD

= ̂Ĵ
r
(−1)s+r+L+J

s 
r

J
r

L J 












00,n, n

r

r
,NL,

d= a

A−a
nrr ,NL,Jr

∑ Φν
r
n
r

J
r

πrT ϕ
NL
(


ξ
0
)







J
π
T( )

SD
Φ fSD

JπT Ôt.i. ΦiSD
JπT

SD
= M JπT

iSD fSD ,iR fR
iR fR

∑ Φ fR
JπT Ôt.i. ΦiR

JπT

Calculate these Interested in these

Matrix inversion
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§ Can use second quantization representation

— Matrix elements of translational operators can be expressed in terms 
matrix elements of density operators on the target eigenstates

— E.g., the matrix elements appearing in the RGM norm kernel for nucleon-
nucleus channel states:   

Working within the ‘SD’ channel basis we can 
access reac6ons involving p-shell targets

§ SD to Jacobi transformation is general and exact
§ Can use powerful second quantization representation

• Matrix elements of translational invariant operators can be expressed in 
terms of matrix elements of density operators on the target eigenstates

• For example, for a =a’ = 1

§ Given a, a’, matrix elements are also general (same for different A’s)

SD

Φ ′ν ′n
J
π
T
PA−1,A Φνn

J
π
T

SD

=
1

A−1
ŝ ′̂s ĵ ′̂j

j ′j Kτ

∑ K̂τ̂ (−1) ′I1+ ′j +J
(−1)

T1+
1
2
+T

×
I
1

1
2

s

 J j













′I
1

1
2

′s

′ J ′j













I
1

K ′I
1

′j J j













T
1

τ ′T
1

1
2

T 1
2













×
SD

A−1 ′α
1
′I
1

′π1 ′T
1

a
nj 1

2

+
a ′n ′ ′j 1

2
( )

(Kτ )

A−1 α
1
I
1

π1T
1

SD

One-body density
matrix elements
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A−1( )

a =1( )′r r

A−1( )

′a =1( )
Φ ′ν ′r

J
π
T
Â ′v HÂv Φνr

J
π
T
= H 1− P̂

iA

i=1

A−1

∑










-

H ′v v
J
π
T
( ′r , r) = T

rel
(r)+V

Coul
(r)+ε ′α1

′I1
′π1 ′T1



N ′v v

J
π
T
( ′r , r)

+ (A−1) R ′n ′ ( ′r )Rn(r) Φ ′ν ′n
J
π
T
V
A−1,A 1− P̂A−1,A( )Φνn

J
π
T

′n n

∑

− (A−1)(A− 2) R ′n ′ ( ′r )Rn(r) Φ ′ν ′n
J
π
T
P̂
A−1,AVA−2,A−1 Φνn

J
π
T

′n n

∑

+ A−1( )× − A−1( )(A− 2)×

Direct potential: in the model space
(interaction is locaized!)

Exchange potential: 
in the model space

The RGM (2-body) Hamiltonian kernel 
for nucleon-nucleus channel states 
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A−1( )

a =1( )′r r

A−1( )

′a =1( )
Φ ′ν ′r

J
π
T
Â ′v HÂv Φνr

J
π
T
= H 1− P̂

iA

i=1

A−1

∑










H ′v v
J
π
T
( ′r , r) = T

rel
(r)+V

Coul
(r)+ε ′α1

′I1
′π1 ′T1



N ′v v

J
π
T
( ′r , r)

+ (A−1) R ′n ′ ( ′r )Rn(r) Φ ′ν ′n
J
π
T
V
A−1,A 1− P̂A−1,A( )Φνn

J
π
T

′n n

∑

− (A−1)(A− 2) R ′n ′ ( ′r )Rn(r) Φ ′ν ′n
J
π
T
P̂
A−1,AVA−2,A−1 Φνn

J
π
T

′n n

∑

Direct potential: in the model space
(interaction is localized!)

Exchange potential: 
in the model space

∝
SD

ψ ′α1

(A−1)
a
+
a ψα1

(A−1)

SD

∝
SD

ψ ′α1

(A−1)
a
+
a
+
aa ψα1

(A−1)

SD

The RGM (2-body) Hamiltonian kernel 
for nucleon-nucleus channel states 
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A−1( )

a =1( ) r′r

A−1( )

′a =1( )
Φ ′ν ′r

J
π
T
Â ′vV

NNN
Â
v
Φνr

J
π
T
= V

NNN
1− P̂

iA

i=1

A−1

∑










Direct potential: in the model space
(interaction is localized!)

Exchange potential: in the model space
(interaction is localized!)

∝
SD

ψ ′α1

(A−1)
ai
+
aj
+
alak ψα1

(A−1)

SD
∝

SD
ψ ′α1

(A−1)
ah
+
ai
+
aj
+
amalak ψα1

(A−1)

SD

--

The RGM three-nucleon force kernel 
for nucleon-nucleus channel states 
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€ 

1− ˆ P ij
k= A−1

A

∑
i=1

A−2

∑ + ˆ P i,A
ˆ P j,A−1

i< j=1

A−2

∑
A− 2( )

a = 2( )′r r

A− 2( )

′a = 2( )

Φ ′ν ′r

J
π
T
Â ′v Âv Φνr

J
π
T
=

N ′v v

J
π
T
( ′r , r) = δ ′v v

δ( ′r − r)

′r r
− 2(A− 2) R ′n ′ ( ′r )Rn(r) Φ ′ν ′n

J
π
T
P̂
A−2,A Φνn

J
π
T

′n n

∑

+ (A−2)(A−3)
2

R ′n ′ ( ′r )Rn(r) Φ ′ν ′n

J
π
T
P̂
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The RGM norm kernel 
for deuteron-nucleus channel states 
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for deuteron-nucleus channel states 
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1) Enables exact removal of spurious motion of the center of mass

2) Successfully applied to nucleon-nucleus, deuterium-nucleus, 3H/3He-
nucleus collisions, (d,N) transfer reactions, radiative capture reactions 

3) Has been extended to the description of three-cluster dynamics

4) Projectile wave function always in Jacobi coordinates: the formalism 
depends on the number of nucleons in the projectile

5) Requires the calculation of one-body, two-body,  three-body and even 
higher-body densities of the target depending on Hamiltonian (2-body 
versus 3-body), number of nucleons in the projectile

6) For p-shell targets three- and higher-body densities cannot be 
precomputed and stored, have to be computed on the fly

7) Limitation: tends to underestimate short-range  many-body correlations

Some considerations on the NCSM/RGM
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Short-range many-body correlations are 
recovered through cluster excitations

§ Are the 4He excited states 
really needed to accurately 
describe the n+4He continuum? 

§ Yes … the 4He core 
polarization is non negligible.

• SRG-evolved chiral NN+3N 
with l = 2.0 fm-1

• Very large (Nmax = 13)        
model space

• Up to first 7 states of 4He

• Not sufficient!

n+4He Scattering Phase Shifts

Convergence with number of 4He eigenstates

G. Hupin, J. Langhammer, P. Navratil, S. Quaglioni, A. 
Calci, And R. Roth, Phys. Rev. C 88, 054622 (2013)
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§ Seeks many-body solutions in the form of a generalized cluster expansion

§ Ab initio no-core shell model (NCSM):

— Clusters’ structure, short range

§ Resonating-group method (RGM):

— Dynamics between clusters, long range

1max += NN


r

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

Unknowns

NCSM 
eigenstates

NCSM/RGM
continuous states

Ab initio no-core shell model with continuum (NCSMC)
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§ Scattering matrix (and observables) from matching solutions to known 
asymptotic with microscopic R-matrix on Lagrange mesh
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Discrete and continuous variational amplitudes are 
determined by solving the coupled NCSMC equations
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NCSM states account for short-range many-body 
correla8ons (cluster excita8ons)

n+4He Scattering Phase Shifts
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Convergence with number of 4He eigenstates

G. Hupin, S. Quaglioni, and P. Navratil, JPC Conf. Proc. 
in print,  (2015)

+

§ Are the 4He excited states 
really needed to accurately 
describe the n+4He continuum? 

§ … No. Eigenstates of the 5He 
compound nucleus can 
compensate for missing 4He 
excitations 
• Same as before + up to first 14 

5He states 

• Excellent convergence!

4He core polarization is non 
negligible. 5He states essential 

to describe resonances  
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1) Efficient simultaneous description of short-range many-body and long-
range cluster correlations

2) Successfully applied to nucleon-nucleus, deuterium-nucleus, 3H/3He-
nucleus collisions, (d,N) transfer reactions, radiative capture reactions 

3) Has been extended to the description of three-cluster dynamics

4) Formalism requirements are similar to NCSM/RGM

5) Exploring normal-ordering approximation of 3N force

6) Exploring more efficient on the fly calculation of density matrix elements

7) Another possibility: Controlled approximation of densities?

Some considerations on the NCSMC
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Microscopic R-Matrix theory 
in a Generator Coordinate basis

!

Ψ#$%$&

'( ! = *+,$'
%
& 1 + / *+ Ψ#$%$&

!

Ψ#$%$&
! =0

1
2#$%$&

1 Φ#$%$&

45 1 !

§ Two-center HO shell model

§ Antisymmetrization is trivial

§ However, single-particle basis states no longer orthogonal

— 6#% centered at 7897 !

— 6#& centered at −78;
7 !

§ Needs angular momentum and parity projection
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Microscopic R-Matrix theory 
in a Generator Coordinate basis
§ Two-center HO shell model

§ Antisymmetrization is trivial

§ However, single-particle basis states no longer orthogonal

— !"# centered at $%&$ '

— !"( centered at −$%*
$ '

§ Needs angular momentum and parity projection
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Microscopic R-Matrix theory 
in a Generator Coordinate basis
§ It can be demonstrated that

§ Generator Coordinate Method (GCM) ansatz for the wave function in the 
internal region:

§ Equivalent to RGM:
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Microscopic R-Matrix theory 
in a Generator Coordinate basis

It can be demonstrated that§

Generator Coordinate Method (GCM) ansatz for the wave func<on in the §
internal region:

GCM equa<ons:§

!
"

#"$" %
&
$, %& − ) *+$"(%&′, %&) /"

01 %& = 0

x
O

456
4
%

−
457
4
%

89Ψ5;7;6

01 % ∝!
=ℓ

?45@5=ℓ;7;6

01 (A5, %) BCΦ5=ℓ
01

89Ψ01 = !
5;7;6

E 89Ψ5;7;6

01 % /5;7;6

01 % %2G% ≈ !
5;7;6I

89Ψ5;7;6

01 %& /5;7;6

01 %&



LLNL-PRES-753015
42

§ NCSMC within symmetry adapted basis?

§ NCSMC-inspired formalism?

— Use target densities computed within coupled-cluster or IM-SRG 

— Approximate removal of center of mass motion

§ GCM-inspired formalism?

— Valence-space IM-SRG or similar ‘ab initio shell model’ wave functions

§ …

Ab initio reaction theory 
for medium-mass nuclei?
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Microscopic R-Matrix with 
Density Functional Theory 

1) Static projectile-target solutions: 
Density Functional Theory (DFT) 
accounts for Pauli principle, 
microscopic nuclear interactions

Builds on methods for fission theory

!

(in collaboration with N. Schunck)
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6666 -(%) $%%

Microscopic R-Matrix with 
Density Functional Theory 

2) Projectile-target dynamics:
Generator coordinate method 
(GCM) with Gaussian overlap 
approximation maps the many-
body problem into a collective 
Schrödinger-like equation for the 
relative motion 

Similar to: Berger & Gogny, NPA333, 302
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2) Projectile-target dynamics:
Generator coordinate method 
(GCM) with Gaussian overlap 
approximation maps the many-
body problem into a collective 
equation for the relative-motion 
amplitudes 
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Microscopic R-Matrix with 
Density Functional Theory 

Similar to: Berger & Gogny, NPA333, 302
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3) Point canonical transformation:
Maps the GCM+GOA equation 
into a Schrödinger-like equation 
for a relative motion wave 
function:

— Change of variables:

! = #$
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) * + ,+

- . = *(.)/#
%
2 3 !

Microscopic R-Matrix with 
Density Functional Theory 
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Point canonical transforma.on:3)
Maps the GCM+GOA equa2on 
into a Schrödinger-like equa2on 
for a rela2ve mo2on wave 
func2on

New poten2al depends on the §
deriva2ve of the collec2ve mass
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§ Present results obtained by including only 0+ ground-state DFT solutions for 
24Mg(12C+12C)

§ Preliminary results for the low-energy resonances are encouraging

Microscopic R-Matrix with 
Density Functional Theory 

A more quantitative description requires the inclusion of excitations of the 24Mg(12C+12C)

Phase shifts Total cross section
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§ R-Matrix theory provides a rigorous framework for bridging many-body 
bound-state calculations and collision theory

§ Today there are several implementations of it, I only mentioned a few 

§ The RGM or equivalently the GCM provide a convenient explicit treatment  
of clustering, facilitate matching with asymptotic solutions

— Present different challenges

§ It should be possible to combine R-Matrix theory with ab initio methods for 
medium-mass nuclei

§ Attempt to combine R-Matrix theory with Density Functional Theory

Conclusions


