Microscopic R-Matrix approaches

FRIB-Theory Alliance workshop: From bound states to the continuum
Connecting bound state calculations with scattering and reaction theory

Sofia Quaglioni
June 12, 2018

Content

Elements of the Scattering Matrix

Cross Sections

- R-Matrix theory
- Resonating Group Method
- Implemented within the nocore shell model
- No-core shell model with continuum
- Generator Coordinate Method
- Microscopic R-Matrix combined with Density Functional Theory

R-Matrix theory provides a rigorous framework for bridging ab initio many-body and collision theory

R-Matrix theory provides a rigorous framework for bridging ab initio many-body and collision theory

Scattering wave functions at surface of interaction region parameterized by R-Matrix

In its phenomenological incarnation experimental cross sections are fitted in terms of the R-matrix parameters

The values and properties of the R-matrix parameters can be predicted on the basis of a microscopic theory

Need an approach to describe dynamics between clusters of nucleons

e.g.: Resonating Group Method

Binary Cluster Resonating Group Method

- Trial wave function $\left(v \equiv\left\{A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1} ; a \alpha_{2} I_{2}^{\pi_{2}} T_{2} ; s \ell\right\}\right)$:

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d r r^{2} \frac{\gamma_{\nu}^{J^{\pi} T}(r)}{r} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle
$$

Relative vector

$$
\vec{r}_{A-a, a}=\frac{1}{A-a} \sum_{i=1}^{A-a} \boldsymbol{r}_{i}-\frac{1}{a} \sum_{j=A-a+1}^{A} \boldsymbol{r}_{j}
$$

Binary Cluster Resonating Group Method

- Trial wave function $\left(v \equiv\left\{A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1} ; a \alpha_{2} I_{2}^{\pi_{2}} T_{2} ; s \ell\right\}\right)$:

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d r r^{2} \frac{\gamma_{\nu}^{J^{\pi} T}(r)}{r} \hat{\mathcal{A}}\left(\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \quad \stackrel{\rightharpoonup}{r}_{A-a, a}^{\vec{b}^{2}}(a)\right.
$$

Translational invariant channel basis

$$
\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}
$$

- Target and projectile wave functions are both translational invariant

Binary Cluster Resonating Group Method

- Trial wave function $\left(v \equiv\left\{A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1} ; a \alpha_{2} I_{2}^{\pi_{2}} T_{2} ; s \ell\right\}\right)$:

$$
\begin{aligned}
& \left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d r r^{2} \frac{\gamma_{\nu}^{J^{\pi} T}(r)}{r}\left(\hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle\right. \\
& \text { ter } \\
& \text { trizer } \quad \hat{\mathcal{A}}_{\nu}=\sqrt{\frac{(A-a)}{\vec{r}_{A-a, a}}(a)}
\end{aligned}
$$

Inter-cluster antisymmetrizer

- Antisymmetrizes wave function for exchanges of nucleons across clusters
- Note that $\vec{r}_{A-a, a}$ changes under the action of the antisymmetrizer

Binary Cluster Resonating Group Method

- Trial wave function ($\left.v \equiv\left\{A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1} ; a \alpha_{2} I_{2}^{\pi_{2}} T_{2} ; s \ell\right\}\right)$:

$$
\begin{align*}
& \left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d r r^{2} \frac{\gamma_{\nu}^{J^{\pi} T}(r)}{r} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \tag{a}\\
& \stackrel{\vec{r}_{A-a, a}}{(a)} \\
& (A-a) \\
& \text { Unknown } \\
& \text { amplitudes } \\
& \sum_{\nu} \int d r r^{2}[\underbrace{\mathcal{H}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)}-E \underbrace{\mathcal{N}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)}] \frac{\gamma_{\nu}^{J^{\pi} T}(r)}{r}=0 \\
& \left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} H \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \\
& \text { Hamiltonian kernel } \\
& \text { Overlap (or norm) kernel }
\end{align*}
$$

RGM equations

Solving the RGM equations ...

- The RGM equations can be orthogonalized (see PRC 79, 044606)

$$
\sum_{v^{\prime}} \int d r^{\prime} r^{\prime 2}\left[N^{-\frac{1}{2}} H N^{-\frac{1}{2}}\right]_{v v^{\prime}}\left(r, r^{\prime}\right) \frac{u_{v^{\prime}}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{u_{v}(r)}{r}
$$

- This removes the energy dependence from the 'effective' projectiletarget potential (see below)
- In the end, one is left with a set of integral-differential coupled channel equations with a non-local potential of the type:

$$
[T_{r e l}(r)+\bar{V}_{\text {Coul }}(r)-(\underbrace{E-\varepsilon_{\alpha_{1}}-\varepsilon_{\alpha_{2}}}_{E_{v}})] u_{v}(r)+\sum_{v^{\prime}} \int d r^{\prime} r^{\prime} W_{v v^{\prime}}\left(r, r^{\prime}\right) u_{v^{\prime}}\left(r^{\prime}\right)=0
$$

... with the R-Matrix method

External region

$$
V=V_{\text {Coul }}
$$

Expansion on a basis (square-integrable)

$$
u_{c}(r)=\sum_{n} A_{c n} f_{n}(r)
$$

Bound state asymptotic behavior

$$
u_{c}(r)=C_{c} W\left(k_{c} r\right)
$$

Scattering state asymptotic behavior

$$
u_{c}(r)=\frac{i}{2} v_{c}^{-\frac{1}{2}}\left[\delta_{c i} I_{c}\left(k_{c} r\right)-S_{c i} O_{c}\left(k_{c} r\right)\right]
$$

... with the R-Matrix method

- R-matrix formalism conveniently expressed with the help of the Bloch surface operator

$$
L_{c}=\frac{\hbar^{2}}{2 \mu_{c}} \delta(r-a)\left(\frac{d}{d r}-\frac{B_{c}}{r}\right)
$$

Boundary parameters

- System of Bloch-Schrödinger equations:

$$
\begin{gathered}
{\left[\hat{T}_{\text {rel }}(r)+L_{c}+\bar{V}_{\text {Coul }}(r)-\left(E-E_{c}\right)\right] u_{c}(r)+\sum_{c^{\prime}} \int d r^{\prime} r^{\prime} W_{c c^{\prime}}\left(r, r^{\prime} u_{c^{\prime}}\left(r^{\prime}\right)=L u_{c}(r)\right.} \\
u_{c}(r)=\sum_{n} A_{c n} f_{n}(r) \quad \begin{array}{c}
\text { asymptotic form } \\
\text { for large } r
\end{array}
\end{gathered}
$$

... with the R-Matrix method

- We can choose:

$$
B_{c}=k_{c} a \frac{W^{\prime}\left(k_{c} a\right)}{W\left(k_{c} a\right)} \Rightarrow L_{c} u_{c}^{e x t}(r)=0
$$

- After projection (from the left) on the basis $f_{n}(r)$:

$$
\begin{aligned}
& \sum_{c n^{\prime} n^{\prime}}\left[C_{c n, c^{\prime} n^{\prime}}-E \delta_{c, n, c^{\prime} n^{\prime}}\right] A_{c^{\prime} n^{\prime}}=0 \\
& \left.\left\langle f_{n}\right| \hat{T}_{c c}(r)+L_{c}+\bar{V}_{c o u l}(r)\left|f_{n}\right\rangle\right\rangle_{c c}+\left\langle f_{n}\right| W_{c c}\left(r, r^{\prime}\right)\left|f_{n}\right\rangle
\end{aligned}
$$

Bound states

- We can choose:

$$
B_{c}=k_{c} a \frac{W^{\prime}\left(k_{c} a\right)}{W\left(k_{c} a\right)} \Rightarrow L_{c} u_{c}^{e x t}(r)=0
$$

- After projection (from the left) on the basis $f_{n}(r)$:

$$
\sum_{c^{\prime} n^{\prime}}\left[C_{c n, c^{\prime} n^{\prime}}-E \delta_{c n, c^{\prime} n^{\prime}}\right] A_{c^{\prime} n^{\prime}}=0
$$

- Start with $E=0$ and solve iteratively (k_{c} depends on the energy!)
- Convergence in few iterations

Scattering states

- We can choose: $B_{c}=0$
- After projection (from the left) on the basis $f_{n}(r)$:

$$
\sum_{c^{\prime} n^{\prime}}\left[C_{c n, c^{\prime} n^{\prime}}-\left(E-E_{c}\right) \delta_{c n, c^{\prime} n^{\prime}}\right] A_{c^{\prime} n^{\prime}}=\frac{\hbar^{2} k_{c}}{2 \mu_{c} v_{c}^{1 / 2}}\left\langle f_{n}\right| L_{c}\left|I_{c} \delta_{c i}-S_{c i} O_{c}\right\rangle
$$

1) Solve for $A_{c n}$
2) Match internal and external solutions at channel radius, a

$$
\left.\sum_{c} R_{c c^{\prime}}\right) \frac{k_{c^{\prime}} a}{\sqrt{\mu_{c^{\prime}} v_{c^{\prime}}}}\left[I_{c^{\prime}}^{\prime}\left(k_{c^{\prime}} a\right) \delta_{c i}-S_{c^{\prime} i} O_{c^{\prime}}^{\prime}\left(k_{c^{\prime}} a\right)\right]=\frac{1}{\sqrt{\mu_{c} v_{c}}}\left[I_{c}\left(k_{c} a\right) \delta_{c i}-S_{c i} O_{c}\left(k_{c} a\right)\right]
$$

Scattering states

- In the process introduce R-matrix, projection of the Green's function operator on the channel-surface functions

$$
R_{c c^{\prime}}=\sum_{n n^{\prime}} \frac{\hbar}{\sqrt{2 \mu_{c} a}} f_{n}(a)[C-E I]_{c n, c^{\prime} n^{\prime}}^{-1} \frac{\hbar}{\sqrt{2 \mu_{c^{\prime}} a}} f_{n^{\prime}}(a)
$$

3) Solve for the scattering matrix: $\quad S=Z^{-1} Z^{*}$

$$
\text { with: } Z_{c c^{\prime}}=\left(k_{c^{\prime}} a\right)^{-1}\left[O_{c}\left(k_{c} a\right) \delta_{c c^{\prime}}-k_{c^{\prime}} a R_{c c^{\prime}} O_{c^{\prime}}^{\prime}\left(k_{c^{\prime}} a\right)\right]
$$

- Phase shifts, cross sections are computed from the scattering matrix

Scattering states

- The R-matrix takes a simple pole-expansion form, in terms of energy levels E_{λ} and (energy independent) partial widths $\gamma_{\lambda c}$

$$
\begin{aligned}
& R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E} \quad \text { with } \quad \gamma_{\lambda c}=\sum_{n n^{\prime}} \frac{\hbar}{\sqrt{2 \mu_{c} a}} f_{n}(a) B_{c n, \lambda} \quad \begin{array}{l}
\begin{array}{l}
\text { Change from } \\
f_{n} \text { basis to } \\
\text { eigenvectors } \\
\text { of matrix C }
\end{array}
\end{array} \\
& \text { 3) Solve for the scattering matrix: } S=Z^{-1} Z^{*}
\end{aligned}
$$

$$
\text { with: } Z_{c c^{\prime}}=\left(k_{c^{\prime}} a\right)^{-1}\left[O_{c}\left(k_{c} a\right) \delta_{c c^{\prime}}-k_{c^{\prime}} a R_{c c^{\prime}} O_{c^{\prime}}^{\prime}\left(k_{c^{\prime}} a\right)\right]
$$

- Phase shifts, cross sections are computed from the scattering matrix

Scattering states

- The R-matrix takes a simple pole-expansion form, in terms of energy levels E_{λ} and (energy independent) partial widths $\gamma_{\lambda c}$

$$
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E}
$$

In phenomenological theory:
E_{λ} and $\gamma_{\lambda c}$ used as fitting parameters (typically use a few channels)
3) Solve for the scattering matrix: $\quad S=Z^{-1} Z^{*}$

$$
\text { with: } Z_{c c^{\prime}}=\left(k_{c^{\prime}} a\right)^{-1}\left[O_{c}\left(k_{c} a\right) \delta_{c c^{\prime}}-k_{c^{\prime}} a R_{c c^{\prime}} O_{c^{\prime}}^{\prime}\left(k_{c^{\prime}} a\right)\right]
$$

- Phase shifts, cross sections are computed from the scattering matrix

Scattering states

- The R-matrix takes a simple pole-expansion form, in terms of energy levels E_{λ} and (energy independent) partial widths $\gamma_{\lambda c}$

$$
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E}
$$

In ab initio theory:
E_{λ} and $\gamma_{\lambda c}$ computed from first principles (typically large number of channels)
3) Solve for the scattering matrix: $\quad S=Z^{-1} Z^{*}$

$$
\text { with: } Z_{c c^{\prime}}=\left(k_{c^{\prime}} a\right)^{-1}\left[O_{c}\left(k_{c} a\right) \delta_{c c^{\prime}}-k_{c^{\prime}} a R_{c c^{\prime}} O_{c^{\prime}}^{\prime}\left(k_{c^{\prime}} a\right)\right]
$$

- Phase shifts, cross sections are computed from the scattering matrix

If target and projectile are obtained within the ab initio NCSM, one arrives at the ab initio NCSM/RGM approach

- Jacobi channel states in the harmonic oscillator (HO) space:

$$
\left|\Phi_{v n}^{J^{\pi_{T}}}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} R_{n \ell}\left(r_{A-a, a}\right)
$$

- Notes:
- Formally, the coordinate space channel sates given by:

$$
\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\sum_{n} R_{n \ell}(r)\left|\Phi_{v n}^{J^{\pi_{T}}}\right\rangle
$$

- I used the closure properties of HO radial wave functions

$$
\delta\left(r-r_{A-a, a}\right)=\sum_{n} R_{n \ell}(r) R_{n \ell}\left(r_{A-a, a}\right)
$$

In practice, expansion is truncated and is only used for short-range components of NCSM/RGM kernels

- Again: target and projectile are both translational invariant eigenstates
- Works for the projectiles up to ${ }^{4} \mathrm{He}$
- Not practical if we want to describe reactions with p-shell targets!

An example: the RGM norm kernel for nucleon-nucleus channel states

$$
\left\langle\Phi_{v^{\prime} r^{\prime}}^{J^{\pi} T} \hat{A}_{v^{\prime}} \hat{A}_{v} \mid \Phi_{v r}^{J^{\pi^{\pi}}}\right\rangle=\langle\underbrace{(A-1)}_{r^{\prime}}| a^{\prime}=1)\left|-\sum_{i=1}^{A-1} \hat{P}_{i A}\right| \begin{array}{l}
\text { (a=1)} \\
\frac{(A-1)}{r}
\end{array}\rangle
$$

$$
N_{\nu^{\prime} v}^{\mathrm{RGM}}\left(r^{\prime}, r\right)=\underbrace{\delta_{v^{\prime} v} \frac{\delta\left(r^{\prime}-r\right)}{r^{\prime} r}}-(A-1) \sum_{\sum_{n^{\prime} n} R_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) R_{n \ell}(r \underbrace{\left\langle\Phi_{v^{\prime} n^{\prime}}^{J^{\pi} T}\right| \hat{P}_{A-1, A}\left|\Phi_{v n}^{J^{\pi} T}\right\rangle}) .}
$$

$$
\begin{aligned}
& \text { Direct term: } \\
& \text { Treated exactly! } \\
& \text { (in the full space) }
\end{aligned}
$$

Define Slater-Determinant (SD) channel states in which the target is described by a SD eigenstates

$$
\begin{aligned}
& \left|\Phi_{v n}^{J^{\pi} T}\right\rangle_{S D}=[(\underbrace{\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle_{S D}}\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle)^{(s T)} Y_{\ell}(\underbrace{\hat{R}_{c . m .}^{(a)}})]^{\left(J^{\pi} T\right)} R_{n \ell}(\underbrace{R_{c . m}^{(a)}}) \\
& \left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \varphi_{00}(\underbrace{\vec{R}_{c . m .}^{(A-a)}}) \\
& \text { Vector proportional } \\
& \text { to the c.m. coordinate } \\
& \text { of the } a \text { nucleons } \\
& \text { Vector proportional to the c.m. }
\end{aligned}
$$ coordinate of the A - a nucleons

$$
\left(\varphi_{00}\left(\vec{R}_{c . m .}^{(A-a)}\right) \varphi_{n \ell}\left(\vec{R}_{c . m .}^{(a)}\right)\right)^{\ell}=\sum_{n_{r} \ell_{r}, N L}\left\langle 00, n \ell, \ell \mid n_{r} \ell_{r}, N L, \ell\right\rangle_{d=\frac{a}{A-a}}\left(\varphi_{n_{r} \ell}\left(\vec{\eta}_{A-a}\right) \varphi_{N L}\left(\vec{\xi}_{0}\right)\right)^{\ell} \begin{gathered}
\text { c.m. } \\
\text { motion }
\end{gathered}
$$

In this 'SD' channel basis, translation-invariant matrix elements are mixed with c.m. motion ...

- More in detail:
c.m. motion
- The spurious motion of the c.m. is mixed with the intrinsic motion

... but they can be extracted exactly from the 'SD' matrix elements by applying the inverse of the mixing matrix

- More in detail:

> c.m. motion

$$
\left.\left|\Phi_{v n}^{J^{\pi} T}\right\rangle_{S D}=\sum_{n_{r} \ell, N L, J_{r}} \hat{\ell} \hat{J}_{r}(-1)^{s+\ell_{r}+L+J}\left\{\begin{array}{ccc}
s & \ell_{r} & J_{r} \\
L & J & \ell
\end{array}\right\}\left\langle 00, n \ell, \ell \mid n_{r} \ell_{r}, N L, \ell\right\rangle_{d=\frac{a}{A-a}}\left[\Phi_{v_{r} n_{r}}^{J_{r}^{\pi_{r} T}} \varphi_{N L}\left(\vec{\xi}_{0}\right)\right]\right]^{\left(J^{\pi} T\right)}
$$

- The spurious motion of the c.m. is mixed with the intrinsic motion

Working within the 'SD' channel basis we can access reactions involving p-shell targets

- Can use second quantization representation
- Matrix elements of translational operators can be expressed in terms matrix elements of density operators on the target eigenstates
- E.g., the matrix elements appearing in the RGM norm kernel for nucleonnucleus channel states:

$$
{ }_{S D}\left\langle\Phi_{v^{\prime} n^{\prime}}^{J^{\pi} T}\right| P_{A-1, A}\left|\Phi_{v n}^{J^{\pi} T}\right\rangle_{S D}=\frac{1}{A-1} \sum_{j j^{\prime} K \tau} \hat{\boldsymbol{s}} \hat{\boldsymbol{S}}^{\prime} \hat{j j} j^{\prime} \hat{K} \hat{\boldsymbol{\tau}}(-1)^{I_{1}^{\prime}+j^{\prime}+J}(-1)^{T_{1}+\frac{1}{2}+T}
$$

One-body density	$\times\left\{\begin{array}{ccc}I_{1} & \frac{1}{2} & s \\ \ell & J & j\end{array}\right\}\left\{\begin{array}{ccc}I_{1}^{\prime} & \frac{1}{2} & s^{\prime} \\ \ell^{\prime} & J & j^{\prime}\end{array}\right\}\left\{\begin{array}{ccc}I_{1} & K & I_{1}^{\prime} \\ j^{\prime} & J & j\end{array}\right\}\left\{\begin{array}{ccc}T_{1} & \tau & T_{1}^{\prime} \\ \frac{1}{2} & T & \frac{1}{2}\end{array}\right\}$				
	$\times \sum_{S D}\left\langle A-1 \alpha_{1}^{\prime} I_{1}^{\prime \pi_{1}^{\prime}} T_{1}^{\prime}\\| \\|\left(a_{n \ell j \frac{1}{2}}^{+} \tilde{a}_{n^{\prime} \ell j^{\prime} \frac{1}{2}}\right)^{(K \tau)}\\| \\| A-1 \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle_{S D}$				

The RGM (2-body) Hamiltonian kernel for nucleon-nucleus channel states

$$
\left\langle\Phi_{v^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{A}_{v^{\prime}} H \hat{A}_{v}\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\left\langle\underset{r^{\prime}}{\left(a^{\prime}=1\right)}\right| H\left(1-\sum_{i=1}^{(A-1)} \hat{P}_{i A}\right)\left|(a=1) \frac{(A-1)}{r}\right\rangle
$$

$$
\begin{aligned}
H_{v_{v}}^{J^{\pi} T}\left(r^{\prime}, r\right)= & {\left[T_{\text {rel }}(r)+\bar{V}_{\text {Coul }}(r)+\varepsilon_{\alpha_{1}^{\prime}}^{I_{1}^{\prime \pi} T_{1}}\right] N_{v^{\prime} v}^{J^{\pi} T}\left(r^{\prime}, r\right) } \\
& +(A-1) \sum_{n^{\prime} n} R_{n^{\prime} \ell}\left(r^{\prime}\right) R_{n \ell}(r)\left\langle\Phi_{v^{\prime} n^{\prime}}^{J^{\pi} T}\right| V_{A-1, A}\left(1-\hat{P}_{A-1, A}\right)\left|\Phi_{v n}^{J^{\pi} T}\right\rangle \\
& -(A-1)(A-2) \sum_{n^{\prime} n} R_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) R_{n \ell}(r)\left\langle\Phi_{v^{\prime} n_{i}^{\prime}}^{J^{\pi} T}\right| \hat{P}_{A-1, A} V_{A-2, A-1}\left|\Phi_{v n}^{J^{\pi} T}\right\rangle
\end{aligned}
$$

Direct potential: in the model space (interaction is locaized!)

Exchange potential: in the model space

The RGM (2-body) Hamiltonian kernel for nucleon-nucleus channel states

$$
\left\langle\Phi_{v^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{A}_{v^{\prime}} H \hat{A}_{v}\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\left\langle\underset{r^{\prime}}{\left(a^{\prime}=1\right)}\right| H\left(1-\sum_{i=1}^{(A-1)} \hat{P}_{i A}\right)\left|(a=1) \frac{(A-1)}{r}\right\rangle
$$

$H_{\nu^{\prime} v}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left[T_{r e l}(r)+\bar{V}_{\text {Coul }}(r)+\varepsilon_{\alpha_{1}^{\prime}}^{I_{1}^{\prime 1_{1}^{\prime}} T_{1}^{\prime}}\right] N_{v^{\prime} v}^{J^{\pi} T}\left(r^{\prime}, r\right)$

$$
+(A-1) \sum_{n^{\prime} n} R_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) R_{n t}(r)\left\langle\Phi_{v^{\prime} n^{\prime}}^{J^{\prime \pi} T}\right| V_{A-1, A}\left(1-\hat{P}_{A-1, A}\right)\left|\Phi_{v n}^{J^{\pi^{T}} T}\right\rangle
$$

$$
-(A-1)(A-2) \sum_{n^{\prime} n} R_{n^{\prime} \ell}\left(r^{\prime}\right) R_{n \ell}(r)\left\langle\Phi_{v^{\prime} n^{\prime}}^{J J^{\pi} T}\right| \hat{P}_{A-1, A} V_{A-2, A-1}\left|\Phi_{v n}^{J^{\pi} T}\right\rangle
$$

$$
\propto_{S D}\left\langle\psi_{\alpha_{1}}^{(A-1)}\right| a^{+} a\left|\psi_{a_{1}}^{(A-1)}\right\rangle_{S D}
$$

$$
\propto_{S D}\left\langle\psi_{\alpha_{1}^{\prime}}^{(A-1)}\right| a^{+} a^{+} a a\left|\psi_{\alpha_{1}}^{(A-1)}\right\rangle_{S D}
$$

Direct potential: in the model space (interaction is localized!)

Exchange potential:
in the model space

The RGM three-nucleon force kernel for nucleon-nucleus channel states

$$
\left\langle\Phi_{v^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{A}_{v^{\prime}} V^{N N N} \hat{A}_{v}\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\langle\underbrace{(A-1)}_{\left(a^{\prime}=1\right)}| V^{N N N}\left(1-\sum_{i=1}^{A-1} \hat{P}_{i A}\right)|(a=1) \underbrace{(A-1)}_{r}\rangle
$$

$$
\mathcal{V}_{\nu^{\prime} \nu}^{N N N}\left(r, r^{\prime}\right)=\sum R_{n^{\prime} \prime^{\prime}}\left(r^{\prime}\right) R_{n l}(r)\left[\frac{(A-1)(A-2)}{2}\left\langle\Phi_{\nu^{\prime} n^{\prime}}^{J^{\pi}}\right| V_{A-2 A-1 A}\left(1-2 P_{A-1 A}\right)\left|\Phi_{\nu n}^{J \pi T}\right\rangle\right.
$$

$$
\left.--\frac{(A-1)(A-2)(A-3)}{2}\left\langle\Phi_{\nu^{\prime} n^{\prime}}^{J \pi}\right| P_{A-1 A} V_{A-3 A-2 A-1}\left|\Phi_{\nu n}^{J \pi}\right\rangle\right] .
$$

Direct potential: in the model space (interaction is localized!)

Exchange potential: in the model space (interaction is localized!)

(a)

(b)

(c)

The RGM norm kernel for deuteron-nucleus channel states

$$
\left\langle\Phi_{v^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{A}_{v^{\prime}}, \hat{A}_{v}\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\left\langle\begin{array}{c|c}
(A-2) \\
r_{\left(a^{\prime}=2\right)}^{\prime}
\end{array}\right| 1-\sum_{i=1}^{A-2} \sum_{k=A-1}^{A} \hat{P}_{i j}+\sum_{i<j=1}^{A-2} \hat{P}_{i, A} \hat{P}_{j, A-1}|\underset{(a=2) r}{(A-2)}\rangle
$$

$$
\begin{aligned}
N_{v^{\prime} v}^{J^{\pi} T}\left(r^{\prime}, r\right)= & \delta_{v^{\prime} v} \frac{\delta\left(r^{\prime}-r\right)}{r^{\prime} r}-2(A-2) \sum_{n^{\prime} n} R_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) R_{n \ell}(r)\left\langle\Phi_{v^{\prime} n^{\prime}}^{J^{\pi} T}\right| \hat{P}_{A-2, A}\left|\Phi_{v n}^{J^{\pi} T}\right\rangle \\
& +\frac{(A-2)(A-3)}{2} \sum_{n^{\prime} n} R_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) R_{n \ell}(r)\left\langle\Phi_{v^{\prime} n^{\prime}}^{J^{\pi} T}\right| \hat{P}_{A-2, A} \hat{P}_{A-3, A-1}\left|\Phi_{v n}^{J^{\pi} T}\right\rangle
\end{aligned}
$$

final state

initial state

$$
{ }_{S D}\left\langle\psi_{\alpha_{1}^{\prime}}^{(A-1)}\right| a^{+} a\left|\psi_{\alpha_{1}}^{(A-1)}\right\rangle_{S D}
$$

${ }_{S D}\left\langle\psi_{\alpha_{1}^{\prime}}^{(A-1)}\right| a^{+} a^{+} a a\left|\psi_{\alpha_{1}}^{(A-1)}\right\rangle_{S D}$

The RGM (2-body) Hamiltonian kernel for deuteron-nucleus channel states

Some considerations on the NCSM/RGM

1) Enables exact removal of spurious motion of the center of mass
2) Successfully applied to nucleon-nucleus, deuterium-nucleus, ${ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}-$ nucleus collisions, (d, N) transfer reactions, radiative capture reactions
3) Has been extended to the description of three-cluster dynamics
4) Projectile wave function always in Jacobi coordinates: the formalism depends on the number of nucleons in the projectile
5) Requires the calculation of one-body, two-body, three-body and even higher-body densities of the target depending on Hamiltonian (2-body versus 3-body), number of nucleons in the projectile
6) For p-shell targets three- and higher-body densities cannot be precomputed and stored, have to be computed on the fly
7) Limitation: tends to underestimate short-range many-body correlations

Short-range many-body correlations are recovered through cluster excitations

- Are the ${ }^{4} \mathrm{He}$ excited states really needed to accurately describe the $\mathrm{n}+{ }^{4} \mathrm{He}$ continuum?
- Yes ... the ${ }^{4} \mathrm{He}$ core polarization is non negligible.
- SRG-evolved chiral NN+3N with $\lambda=2.0 \mathrm{fm}^{-1}$
- Very large $\left(N_{\max }=13\right)$ model space
- Up to first 7 states of ${ }^{4} \mathrm{He}$
- Not sufficient!

$\mathrm{n}+{ }^{4} \mathrm{He}$ Scattering Phase Shifts

Convergence with number of ${ }^{4} \mathrm{He}$ eigenstates
G. Hupin, J. Langhammer, P. Navratil, S. Quaglioni, A. Calci, And R. Roth, Phys. Rev. C 88, 054622 (2013)

Ab initio no-core shell model with continuum (NCSMC)

- Seeks many-body solutions in the form of a generalized cluster expansion

- Ab initio no-core shell model (NCSM):
- Clusters' structure, short range

- Resonating-group method (RGM):
- Dynamics between clusters, long range

Discrete and continuous variational amplitudes are determined by solving the coupled NCSMC equations

$$
\left.\begin{array}{cc}
1_{N C S M} & g \\
g & N_{R G M}
\end{array}\right)\binom{\text { (c) }}{(u)}
$$

- Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic R-matrix on Lagrange mesh

NCSM states account for short-range many-body correlations (cluster excitations)

- Are the ${ }^{4} \mathrm{He}$ excited states really needed to accurately describe the $\mathrm{n}+{ }^{4} \mathrm{He}$ continuum?
- ... No. Eigenstates of the ${ }^{5} \mathrm{He}$ compound nucleus can compensate for missing ${ }^{4} \mathrm{He}$ excitations
- Same as before + up to first 14 ${ }^{5} \mathrm{He}$ states
- Excellent convergence!

${ }^{4} \mathrm{He}$ core polarization is non

 negligible. ${ }^{5} \mathrm{He}$ states essential to describe resonances$\mathrm{n}+{ }^{4} \mathrm{He}$ Scattering Phase Shifts

Convergence with number of ${ }^{4} \mathrm{He}$ eigenstates
G. Hupin, S. Quaglioni, and P. Navratil, JPC Conf. Proc. in print, (2015)

Some considerations on the NCSMC

1) Efficient simultaneous description of short-range many-body and longrange cluster correlations
2) Successfully applied to nucleon-nucleus, deuterium-nucleus, ${ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}$ nucleus collisions, (d, N) transfer reactions, radiative capture reactions
3) Has been extended to the description of three-cluster dynamics
4) Formalism requirements are similar to NCSM/RGM
5) Exploring normal-ordering approximation of 3 N force
6) Exploring more efficient on the fly calculation of density matrix elements
7) Another possibility: Controlled approximation of densities?

Microscopic R-Matrix theory in a Generator Coordinate basis

- Two-center HO shell model

$$
\Psi_{\nu K_{1} K_{2}}(\vec{R})=\sum_{j} c_{\nu K_{1} K_{2}}^{j} \Phi_{v K_{1} K_{2}}^{(S D) j}(\vec{R})
$$

- Antisymmetrization is trivial
- However, single-particle basis states no longer orthogonal
$-A_{\nu 1}$ centered at $\frac{A_{\nu 2}}{A} \vec{R}$
$-A_{v 2}$ centered at $-\frac{A_{v 1}}{A} \vec{R}$
- Needs angular momentum and parity projection

$$
\Psi_{v K_{1} K_{2}}^{J \pi}(\vec{R})=\hat{P}_{M K}^{J} \frac{1}{2}(1+\pi \hat{P}) \Psi_{v K_{1} K_{2}}(\vec{R})
$$

Microscopic R-Matrix theory in a Generator Coordinate basis

- Two-center HO shell model

$$
\Psi_{\nu K_{1} K_{2}}(\vec{R})=\sum_{j} c_{\nu K_{1} K_{2}}^{j} \Phi_{v K_{1} K_{2}}^{(S D) j}(\vec{R})
$$

- Antisymmetrization is trivial
- However, single-particle basis states no longer orthogonal
$-A_{\nu 1}$ centered at $\frac{A_{v 2}}{A} \vec{R}$
$-A_{v 2}$ centered at $-\frac{A_{v 1}}{A} \vec{R}$
- Needs angular momentum and parity projection

$$
\Psi_{v K_{1} K_{2}}^{J \pi}(\vec{R})=\hat{P}_{M K}^{J} \frac{1}{2}(1+\pi \hat{P}) \Psi_{v K_{1} K_{2}}(\vec{R})
$$

Microscopic R-Matrix theory in a Generator Coordinate basis

- It can be demonstrated that
$\left[\Psi_{v K_{1} K_{2}}^{J \pi}(R)\right\rangle \propto \sum_{s \ell} \hat{A}_{v} u_{v S \ell K_{1} K_{2}}^{J \pi}\left(r_{v}, R\right)\left[\Phi_{v s \ell}^{J \pi}\right\rangle$
- Generator Coordinate Method (GCM) ansatz for the wave function in the internal region:

$$
|\Psi J \pi\rangle=\sum_{\nu K_{1} K_{2}} \int\left|\Psi_{v K_{1} K_{2}}^{J \pi}(R)\right\rangle f_{v K_{1} K_{2}}^{J \pi}(R) R^{2} d R \approx \sum_{\nu K_{1} K_{2} n}\left|\Psi_{v K_{1} K_{2}}^{J \pi}\left(R_{n}\right)\right\rangle f_{v K_{1} K_{2}}^{J \pi}\left(R_{n}\right)
$$

- Equivalent to RGM:

$$
\gamma_{v S \ell}^{J \pi}\left(r_{v}\right)=\sum_{K_{1} K_{2}} f_{v K_{1} K_{2}}^{J \pi}(R) u_{v S \ell K_{1} K_{2}}^{J \pi}\left(r_{v}, R\right) R^{2} d R
$$

Microscopic R-Matrix theory in a Generator Coordinate basis

- It can be demonstrated that
$\left\lfloor\Psi_{v K_{1} K_{2}}^{J \pi}(R)\right\rangle \propto \sum_{s \ell} \hat{A}_{\nu} u_{v s \ell K_{1} K_{2}}^{J \pi}\left(r_{v}, R\right)\left[\Phi_{v s \ell}^{J \pi}\right\rangle$

- Generator Coordinate Method (GCM) ansatz for the wave function in the internal region:

$$
|\Psi J \pi\rangle=\sum_{\nu K_{1} K_{2}} \int\left|\Psi_{v K_{1} K_{2}}^{J \pi}(R)\right\rangle f_{v K_{1} K_{2}}^{J \pi}(R) R^{2} d R \approx \sum_{v K_{1} K_{2} n}\left|\Psi_{v K_{1} K_{2}}^{J \pi}\left(R_{n}\right)\right\rangle f_{v K_{1} K_{2}}^{J \pi}\left(R_{n}\right)
$$

- GCM equations:

$$
\sum_{\alpha}\left[H_{\alpha^{\prime} \alpha}\left(R_{n^{\prime}}, R_{n}\right)-E N_{a^{\prime} \alpha}\left(R_{n^{\prime}}, R_{n}\right)\right] f_{\alpha}^{J \pi}\left(R_{n}\right)=0
$$

Ab initio reaction theory for medium-mass nuclei?

- NCSMC within symmetry adapted basis?
- NCSMC-inspired formalism?
- Use target densities computed within coupled-cluster or IM-SRG
- Approximate removal of center of mass motion
- GCM-inspired formalism?
- Valence-space IM-SRG or similar 'ab initio shell model' wave functions

Microscopic R-Matrix with Density Functional Theory

1) Static projectile-target solutions: Density Functional Theory (DFT) accounts for Pauli principle, microscopic nuclear interactions

Builds on methods for fission theory
(in collaboration with N. Schunck)

Microscopic R-Matrix with Density Functional Theory

2) Projectile-target dynamics: Generator coordinate method (GCM) with Gaussian overlap approximation maps the manybody problem into a collective Schrödinger-like equation for the relative motion

$$
\begin{gathered}
|\Psi\rangle=\int\left|C^{R}\right| \chi(R) d R \\
\left(-\frac{1}{2} \frac{d}{d R} \frac{\hbar^{2}}{\boldsymbol{M}(\boldsymbol{R})} \frac{d}{d R}+\boldsymbol{V}(\boldsymbol{R})-E\right) \chi(R)=0
\end{gathered}
$$

(Q is a proxy for R)

Microscopic R-Matrix with Density Functional Theory

2) Projectile-target dynamics: Generator coordinate method (GCM) with Gaussian overlap approximation maps the manybody problem into a collective equation for the relative-motion amplitudes

$$
|\Psi\rangle=\int\left|{ }^{R}\right| \chi(R) d R
$$

$$
\left(-\frac{1}{2} \frac{d}{d R} \frac{\hbar^{2}}{M(\boldsymbol{R})} \frac{d}{d R}+\boldsymbol{V}(\boldsymbol{R})-E\right) \chi(R)=0
$$

Microscopic R-Matrix with Density Functional Theory

3) Point canonical transformation: Maps the GCM+GOA equation into a Schrödinger-like equation for a relative motion wave function:

$$
\left(-\frac{1}{2} \frac{d}{d R} \frac{\hbar^{2}}{\boldsymbol{M}(\boldsymbol{R})} \frac{d}{d R}+\boldsymbol{V}(\boldsymbol{R})-E\right) \chi(R)=0
$$

- Change of variables:

$$
\begin{aligned}
& r=\mu^{-\frac{1}{2}} \int_{0}^{R} \sqrt{M(x)} d x \\
& \chi(R)=[M(R) / \mu]^{\frac{1}{4}} \psi(r)
\end{aligned}
$$

Microscopic R-Matrix with Density Functional Theory

3) Point canonical transformation: Maps the GCM+GOA equation into a Schrödinger-like equation for a relative motion wave function

$$
\begin{gathered}
\left(-\frac{1}{2} \frac{d}{d R} \frac{\hbar^{2}}{M(R)} \frac{d}{d R}+V(R)-E\right) \chi(R)=0 \\
\left\{\frac{d^{2}}{d r}-\frac{2 \mu}{\hbar^{2}}[U(r)-E]\right\} \psi(r)=0
\end{gathered}
$$

- New potential depends on the derivative of the collective mass

$$
+\frac{\hbar^{2}}{8 M(R)}\left[\frac{7}{4}\left(\frac{M^{\prime}(R)}{M(R)}\right)^{2}-\frac{M^{\prime \prime}(R)}{M(R)}\right]
$$

Microscopic R-Matrix with Density Functional Theory

- Present results obtained by including only 0^{+}ground-state DFT solutions for ${ }^{24} \mathrm{Mg}\left({ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}\right)$
- Preliminary results for the low-energy resonances are encouraging

Phase shifts

Total cross section

A more quantitative description requires the inclusion of excitations of the ${ }^{24} \mathrm{Mg}\left({ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}\right)$

Conclusions

- R-Matrix theory provides a rigorous framework for bridging many-body bound-state calculations and collision theory
- Today there are several implementations of it, I only mentioned a few
- The RGM or equivalently the GCM provide a convenient explicit treatment of clustering, facilitate matching with asymptotic solutions
- Present different challenges
- It should be possible to combine R-Matrix theory with ab initio methods for medium-mass nuclei
- Attempt to combine R-Matrix theory with Density Functional Theory

