Correlated Reference States and Effective Hamiltonians in the IMSRG Framework

Heiko Hergert
Facility for Rare Isotope Beams
\& Department of Physics and Astronomy Michigan State University

(Multi-Reference) In-Medium Similarity Renormalization Group

H. H., Phys. Scripta, Phys. Scripta 92, 023002 (2017)
H. H., S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)
H. H., S. Bogner, T. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302 (2014)
H. H., S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett 110, 242501 (2013)

Transforming the Hamiltonian

- reference state: single Slater determinant

$$
\langle i| H|j\rangle
$$

excitations relative to reference state: normal-ordering

Decoupling in A-Body Space

aim: decouple reference state $|\Phi\rangle$ from excitations

Flow Equation

$\frac{d}{d s} H(s)=[\eta(s), H(s)]$
Operators
truncated at two-body level matrix is never constructed explicitly!

Decoupling

-20

$$
\mathrm{N} 3 \mathrm{LO}, \lambda=2.0 \mathrm{fm}^{-1}, e_{\mathrm{Max}}=8
$$

non-perturbative (correlations)
off-diagonal couplings are rapidly driven to zero

Decoupling

- absorb correlations into RG-improved Hamiltonian

$$
U(s) H U^{\dagger}(s) U(s)\left|\Psi_{n}\right\rangle=E_{n} U(s)\left|\Psi_{n}\right\rangle
$$

- reference state is ansatz for transformed, less correlated eigenstate:

$$
U(s)\left|\Psi_{n}\right\rangle \stackrel{!}{=}|\Phi\rangle
$$

Correlated Reference States

FRIB

Correlated Reference States

ε

MR-IMSRG: build correlations already correlated state (e.g., fro describes static correlatior,

MR-IMSRG(2)

use generalized
normal ordering with 2B,... densities

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.

Titanium Isotopes

Titanium Isotopes

Neutron Number

$\mathrm{N}=32$ sub-shell closure too pronounced: combined effect of method \& interaction !

Calcium Isotopes

Calcium Isotopes

HH, in preparation

Excited States

N. M. Parzuchowski, T. D. Morris, S. K. Bogner, Phys. Rev. C 95, 044304 (2017)
S. R. Stroberg, A. Calci, H. H., J. D. Holt, S. K. Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)
S. R. Stroberg, H. H., J. D. Holt, S. K. Bogner, A. Schwenk, Phys. Rev. C 93, 051301(R) (2016)
S. K. Bogner, H. H., J. D. Holt, A. Schwenk, S. Binder, A. Calci,
 J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014)

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.

EOM-IMSRG

EOM-IMSRG: N. M. Parzuchowski et al., PRC 95, 044304

- use IMSRG Hamiltonian as input for Equation-of-Motion approach
- all nucleons active
- currently include up to 2 p 2 h excitation operators

Valence Space Decoupling

$\langle i| H|j\rangle$
non-valence particle states
valence particle states
hole states (core)

construct non-empirical interactions (and other operators) for use in the nuclear configuration interaction method

Valence Space Decoupling

$$
\langle i| H|j\rangle
$$

change definition of off-diagonal Hamiltonian:

$$
\left\{H^{o d}\right\}=\left\{f_{h^{\prime}}^{h}, f_{p^{\prime}}^{p}, f_{h}^{p}, f_{v}^{q}, \Gamma_{h h^{\prime}}^{p p^{\prime}}, \Gamma_{h v}^{p p^{\prime}}, \Gamma_{v v^{\prime}}^{p q}\right\} \& \text { Н.с. }
$$

Ground-State Energies

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)

- (initial) normal ordering and IMSRG decoupling in the target nucleus
- consistent with (MR-)IMSRG ground state energies (and CC, SCGF, ...) for the same Hamiltonian

Excitation Spectra

S. K. Bogner et al., PRL113, 142501 (2014), S. R. Stroberg et al., PRC 93, 051301(R) (2016)

sd-shell spectra agree very well with experiment and USDA/B...
... for NN+3N(400)
with "wrong" $C_{D}=-0.2$.

H. Hergert - FRIB Theory Alliance Workshop: "From Bound States to the Continuum", Jun 12, 2018

Transitions

N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324;

[^0]
Transitions

N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324; EOM-IMSRG: N. M. Parzuchowski et al., PRC 95, 044304

- non-zero B(E2) from Shell model: VS-IMSRG induces effective neutron charge
- B(E2) much too small: effect of intermediate 3p3h, ... states that are truncated in IMSRG evolution

Transitions

- $B(E 2)$ much too small: effect of intermediate 3p3h, ... states that are truncated in IMSRG evolution

Capturing Static Correlations: IMSRG+GCM

J. M. Yao, C. F. Jiao, L. J. Wang, J. Engel, H. H., in preparation

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.

Example: ${ }^{20} \mathrm{Ne}$

- reference: particlenumber \& angularmomentum projected HFB
- range of deformed reference states flow to the ${ }^{20} \mathrm{Ne}$ ground state
- deviation from Shell model result: correlations beyond MRIMSRG(2)

Approximate MR-IMSRG(3)

FRIB

- approximate MR-IMSRG(3): induced 3B terms recover bulk of missing correlation energy
- size will be reference-state dependent

IMSRG+GCM for ${ }^{20} \mathrm{Ne}$

- rotational band spread out

- B (E2) significantly boosted, but still underestimated (2B part of effective E2 not included yet, spectrum spread out)

Merging IMSRG and NCSM

E. Gebrerufael, K. Vobig, HH and R. Roth, in preparation E. Gebrerufael, K. Vobig, HH and R. Roth, PRL 118, 152503 (2017)

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.

Concept

$$
\text { E. Gebrerufael, K. Vobig, HH and R. Roth, PRL 118, } 152503 \text { (2017) }
$$

NCSM

define
reference state

IMSRG

evolve operators

NCSM
extract observables

- diagonalization in small model space
- use eigenstate as reference
- evolve Hamiltonian and observables with MR-IMSRG
- decoupling in A-body space
- diagonalize evolved Hamiltonian
- calculate eigenstates, observables

${ }^{12} \mathrm{C}:$ Hamiltonian Matrix Evolution

figures by E. Gebrerufael

$$
s=0.00 \mathrm{MeV}^{-1}
$$

Slater determinants

$$
N_{\max }=2 \quad N_{\max }=4
$$

Slater determinants

${ }^{12} \mathrm{C}:$ Hamiltonian Matrix Evolution

figures by E. Gebrerufael

- $N_{\text {max }}=0,2,4$ eigenvalues (almost) identical due to decoupling...
- ... but IMSRG truncation artifacts appear eventually (missing induced 3B+ terms)

Evolution of the Hamiltonian Matrix

figures by E. Gebrerufael

- induced couplings between reference and $\mathrm{N}_{\text {max }}=0$ states
- E(s) does not track lowest eigenvalue
\Rightarrow diagonalize H(s)

Evolution of Ground-State Energies

EM 500/400 NO2B
$\lambda=1.88 \mathrm{fm}^{-1}$
$\hbar \Omega=20 \mathrm{MeV}$
$N_{\text {max }}=0,2,4,6,8$

- strongly enhanced convergence
- plateau in flow
- identify critical $S_{\text {max }}$ at which induced many-body terms become relevant

${ }^{12} \mathrm{C}$: Excitation Spectra

- "uncertainty band": flow parameter variation from $\mathrm{s}_{\text {max }} / 2$ to $S_{\text {max }}$
- excellent agreement for converged states

${ }^{200}$: Excitation Spectra

IM-NCSM

EM 500/400 NO2B
$\lambda=1.88 \mathrm{fm}^{-1}$ $\hbar \Omega=20 \mathrm{MeV}$

- excellent agreement for converged states
- predict 1^{+}state that has not yet been observed experimentally

Epilogue

Where Do We Go from Here?

- Revisit optical potentials (à la J. Rotureau et al., PRC 95, 024315)
- MR-EOM / GCM / ... to describe few-particle and collective correlation
- continuum coupling for exotic nuclei (see K. Fossez)
- Use IMSRG-evolved Hamiltonians in RGM/NCSMC/...)
- Utopia: Can we systematically connect many-body system to few-body system via IMSRG (or other RG) methods?

Acknowledgments

S. K. Bogner, K. Fossez, J. Hill, M. Hjorth-Jensen, J. M. Yao
NSCL/FRIB, Michigan State University

S. R. Stroberg

Reed College

T. D. Morris

UT Knoxville \& Oak Ridge National Laboratory
J. D. Holt, P. Navrátil

TRIUMF, Canada
E. Gebrerufael, K. Hebeler, S. König
R. Roth, A. Schwenk, C. Stumpf,
K. Vobig, R. Wirth

TU Darmstadt, Germany
R. J. Furnstahl, N. M. Parzuchowski

The Ohio State University
J. Engel

University of North Carolina - Chapel Hill
T. Duguet, V. Somà, A. Tichai

CEA Saclay, France
C. Barbieri
U. Surrey, UK

J. Simonis

Johannes Gutenberg University of Mainz, Germany

[^0]:

