Symplectic no-core configuration interaction framework for $a b$ initio nuclear structure

Mark A. Caprio
Department of Physics
University of Notre Dame

From Bound States to the Continuum
East Lansing, MI
universityof
June 14, 2018

Overview

Symplectic symmetry for ab initio calculations
The ultimate goal of diagonalising a realistic many-nucleon Hamiltonian in a $\operatorname{Sp}(3, \mathbb{R}) \supset \mathrm{SU}(3)$ shell model basis, to obtain a fully microscopic description of collective states from first principles, and then to use the $\operatorname{Sp}(3, \mathbb{R})$ model \ldots to expose the underlying dynamical content of the states obtained is, as we hope to show, very near at hand ...
D. J. Rowe, Microscopic theory of the collective nuclear model, Rep. Prog. Phys. 48, 1419 (1985).
\Rightarrow T. Dytrych, K. D. Sviratcheva, J. P. Draayer, C. Bahri, and J. P. Vary, J. Phys. G: Nucl. Part. Phys. 35, 123101 (2008).
Symplectic no-core configuration interaction (SpNCCI) framework

- Intrinsic frame (center-of-mass free) formalism
- Antisymmetric by construction
- Builds on SU(3)-NCSM machinery
- Recursive evaluation of matrix elements

Laddering and commutators
A. E. McCoy, Ph.D. thesis, University of Notre Dame (2018).
A. E. McCoy, M. A. Caprio, and T. Dytrych, Ann. Acad. Rom. Sci.

Ser. Chem. Phys. Sci. 3, 17 (2018), arXiv:1605.04976.
https://github.com/nd-nuclear-theory/spncci

Outline

- Symplectic symmetry and the SpNCCI framework
- A first look at symplectic structure of light nuclei

$$
{ }^{6} \mathrm{Li}
$$

- A simple example of convergence ${ }^{3} \mathrm{He}$

Working with symmetries

States are classified into "irreducible representations" (irreps)
Set of states connected by laddering action of generators

$$
\begin{array}{ll}
J_{ \pm}|J M\rangle \propto|J(M \pm 1)\rangle & \text { Ladder } \\
J_{0}|J M\rangle=M|J M\rangle & \text { Weight (label) }
\end{array}
$$

Irrep is uniquely defined by extremal state (lowest or highest "weight") E.g., for $\mathrm{SU}(2)$, irrep with $M=-J, \ldots, J$ is labeled by $M_{\max } \equiv J$

Operators classified by tensorial properties
Evaluation of matrix elements using group structure

- Selection rules (block structure)
- Wigner-Eckart theorem Clebsch-Gordan
- Commutators \Rightarrow Recurrence relations

$\mathrm{J}=0$	0	0
0	$\mathrm{~J}=2$	0
0	0	$\mathrm{~J}=4$

Why $\operatorname{Sp}(3, \mathbb{R})$ for the many-body problem?

Generators $\quad(i, j=1,2,3)$

$$
\begin{array}{llll}
Q_{i j}=x_{i} x_{j} & \text { "Quadratic" } & P_{i j}=x_{i} p_{j}+p_{i} x_{j} & \text { Scaling/deformation } \\
K_{i j}=p_{i} p_{j} & \text { "Kinetic-like" } & L_{i j}=x_{i} p_{j}-x_{j} p_{i} & \text { Rotation }
\end{array}
$$

Or, in terms of creation/annihilation operators, and as $\mathrm{SU}(3)$ tensors...

$$
b^{\dagger}=\frac{1}{\sqrt{2}}\left(x^{(1)}-i p^{(1)}\right) \quad \tilde{b}=\frac{1}{\sqrt{2}}\left(\tilde{x}^{(1)}+i \tilde{p}^{(1)}\right)
$$

$$
\begin{array}{rlrl}
A^{(20)} \sim b^{\dagger} b^{\dagger} & \text { "Raising" } & \Delta N=+2 \\
H^{(00)}, C^{(11)} \sim b^{\dagger} b & \mathrm{U}(3) \text { generators } & & \Delta N=0 \\
B^{(02)} \sim b b & \text { "Lowering" } & \Delta N=-2
\end{array}
$$

Kinetic energy is linear combination of generators
Kinetic energy conserves $\operatorname{Sp}(3, \mathbb{R})$ symmetry, i.e., stays within an irrep

$$
T=H_{00}^{(00)}-\sqrt{\frac{3}{2}} A_{00}^{(20)}-\sqrt{\frac{3}{2}} B_{00}^{(20)}
$$

Symplectic reorganization of the many-body space

- Recall: Kinetic energy connects configurations with $N_{\mathrm{ex}}^{\prime}=N_{\mathrm{ex}} \pm 2$
- But kinetic energy does not connect different $\operatorname{Sp}(3, \mathbb{R})$ irreps

$$
T=H_{00}^{(00)}-\sqrt{\frac{3}{2}} A_{00}^{(20)}-\sqrt{\frac{3}{2}} B_{00}^{(20)}
$$

- Nucleon-nucleon interaction will still connect $\operatorname{Sp}(3, \mathbb{R})$ irreps at low $N_{\text {ex }}$ By how much? How high in N_{ex} will irrep mixing be significant?

Elliott SU(3) symmetry

Generators of $\mathrm{SU}(3) \supset \mathrm{SO}(3)$

$$
L_{M}^{(1)} \sim\left(b^{\dagger} \times \tilde{b}\right)_{M}^{(1)} \quad Q_{M}^{(2)} \sim\left(b^{\dagger} \times \tilde{b}\right)_{M}^{(2)}
$$

States classified into $\operatorname{SU}(3)$ irreps $\quad(\lambda, \mu)$

- States are correlated linear combinations of configurations over ℓ-orbitals
- Branching of $\mathrm{SU}(3) \rightarrow \mathrm{SO}(3)$ gives rotational bands (in L)

SU(3) no-core shell model

Build up many-body NCCI basis states with good SU(3) symmetry

- A single nucleon in shell $N=2 n+\ell$ has $\operatorname{SU}(3)$ symmetry $(N, 0)$
- Choose a distribution of protons and neutrons over oscillator shells
- Couple all protons or nucleons in single shell to good $\mathrm{SU}(3) \quad \mathrm{U}(v) \supset \mathrm{U}(3)$
- Couple successive oscillator shells to total $\mathrm{SU}(3)$ symmetry

Then apply the $\mathrm{SU}(3)$ group theoretical tensor "machinery" for matrix elements
$\mathrm{SU}(3)$ coupling and recoupling techniques, $\mathrm{SU}(3)$ Wigner-Eckart theorem
T. Dytrych et al., Comput. Phys. Commun. 207, 202 (2016).
T. Dytrych, computer code LSU3shell, http://sourceforge. net/projects/lsu3shell.

Antisymmetry: Implemented in second quantization $\quad\left(c_{(0,0)}^{\dagger} \ldots c_{(N, 0)}^{\dagger}\right)^{\omega S}| \rangle$
Center-of-mass: Factorizes within each $\mathrm{U}(3) \times \mathrm{SU}(2)$ subspace $\omega S[=N(\lambda \mu) S]$
F.Q. Luo, M. A. Caprio, T. Dytrych, Nucl. Phys. A 897, 109 (2013).

Building an $\operatorname{Sp}(3, \mathbb{R})$ irrep

$\mathrm{Sp}(3, \mathbb{R})$ generators can be grouped into ladder and weight-like operators

$$
\begin{array}{rlrl}
A^{(20)} \sim b^{\dagger} b^{\dagger} & \text { "Raising" } & \Delta N=+2 \\
H^{(00)}, C^{(11)} \sim b^{\dagger} b & \mathrm{U}(3) \text { generators } & \Delta N=0 \\
B^{(02)} \sim b b & \text { "Lowering", } & \Delta N=-2
\end{array}
$$

Start from single $\mathrm{SU}(3)$ irrep at lowest "grade" N
Lowest grade irrep (LGI)
Ladder upward in N using $A^{(20)} \quad$ No limit!

$$
\begin{aligned}
B^{(02)}|\sigma\rangle & =0 \\
\left|\psi^{(\omega}\right\rangle & \sim\left[A^{(20)} A^{(20)} \cdots A^{(20)}|\sigma\rangle\right]^{\omega}
\end{aligned}
$$

$\underset{\sigma}{\mathrm{Sp}(3, \mathbb{R})} \underset{n}{\supset} \underset{\omega}{\mathrm{U}(3)} \quad \underset{\omega}{\mathrm{U}(3)} \sim \underset{N_{\omega}}{\mathrm{U}(1)} \otimes \underset{\left(\lambda_{\omega}, \mu_{\omega}\right)}{\mathrm{SU}(3)}$

Building up the SpNCCI many-body space

SpNCCI dimensions in $N_{\sigma, \text { max }}$ truncation

- Take all $\operatorname{Sp}(3, \mathbb{R})$ irreps with $\mathrm{U}(3) \times \mathrm{SU}(2)$ LGIs through $N_{\sigma, \text { max }}$
- Truncate each of these irreps at $N_{\text {max }}$ excitation quanta
- For $N_{\sigma, \max }=N_{\max }$: Maps to the center-of-mass free subspace of the traditional NCCI $N_{\text {max }}$ space Benchmark!

Construction of LGIs for $\operatorname{SpNCCI} \operatorname{Sp}(3, \mathbb{R})$ irreps

How do we identify linear combinations of SU(3)-NCSM configurations which form SpNCCI LGIs?

- LGIs are annihilated by $\operatorname{Sp}(3, \mathbb{R})$ lowering operator $B^{(0,2)}$
- Center-of-mass free LGIs also have zero eigenvalue of $N_{\text {c.m. }}$
- Within each $\operatorname{SU}(3)$-NCSM ωS subspace, LGIs span the simultaneous null space of $B^{(0,2)}$ and $N_{\text {c.m. }}$.
- Solve for simultaneous null vectors of $B^{(0,2)}$ and $N_{\text {c.m. }}$ [$=N-N_{\text {intr }}$] within ωS subspace
- Linear combinations obtained using null solver are arbitrary
- Within each $\operatorname{Sp}(3, \mathbb{R}) \times \operatorname{SU}(2)$ subspace, can we identify LGIs of most important irreps, as linear combinations of original LGIs, and then truncate to those $\operatorname{Sp}(3, \mathbb{R})$ irreps?

$$
\text { E.g., } \mathrm{Sp}(3, \mathbb{R}) \text { importance truncation? }
$$

Recursive scheme for SpNCCI matrix elements

Expand Hamiltonian in terms of fundamental $\mathrm{SU}(3)$ "unit tensor" operators $\mathcal{U}^{N_{0}\left(\lambda_{0}, \mu_{0}\right)}(a, b)$

Analogous to second-quantized expansion of two-body operators in terms of two-body matrix elements: $H \propto \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| H|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}$

$$
H=\sum\left\langle a\left\|H^{N_{0}\left(\lambda_{0}, \mu_{0}\right)}\right\| b\right\rangle \mathcal{U}^{N_{0}\left(\lambda_{0}, \mu_{0}\right)}(a, b)
$$

Find expansion for LGIs in $\operatorname{SU}(3)$-NCSM basis
Compute matrix elements of \mathcal{U} between LGIs using SU(3)-NCSM
Compute matrix elements of \mathcal{U} between all higher-lying $\operatorname{Sp}(3, \mathbb{R})$ irrep members via recurrence on N

$$
\begin{aligned}
\left\langle N^{\prime}\right||\mathcal{U} \| N\rangle & =\left\langle N^{\prime}\right||\mathcal{U} A \| N-2\rangle \\
& =\left\langle N^{\prime}\|A \mathcal{U}\| N-2\right\rangle+\left\langle N^{\prime}\|[\mathcal{U}, A]\| N-2\right\rangle \\
& =\left\langle N^{\prime}-2\|\mathcal{U}\| N-2\right\rangle+\left\langle N^{\prime}\|[\mathcal{U}, A]\| N-2\right\rangle
\end{aligned}
$$

Outline

- Symplectic symmetry and the SpNCCI framework
- A first look at symplectic structure of light nuclei ${ }^{6} \mathrm{Li}$
- A simple example of convergence ${ }^{3} \mathrm{He}$

Structure of the NCCI spectrum of ${ }^{6} \mathrm{Li}$

Decomposition of ${ }^{6} \mathrm{Li}$ states by $N_{\text {ex }}$ and $N_{\sigma, \text { ex }}$

What we might expect for ${ }^{6} \mathrm{Li}$ from Elliott $\mathrm{SU}(3)$

Decomposition by $\mathrm{U}(3)$ content

Expected "valence space" $\mathrm{U}(3)$ families are indeed found ($N_{\mathrm{ex}}=0$)
These are "dressed" with $N_{\mathrm{ex}}=2,4, \ldots$ excitations

Decomposition by $\mathrm{U}(3)$ content

Expected "valence space" $\mathrm{U}(3)$ families are indeed found ($N_{\mathrm{ex}}=0$)
These are "dressed" with $N_{\mathrm{ex}}=2,4, \ldots$ excitations

Decomposition by $\mathrm{U}(3)$ content

Expected "valence space" $\mathrm{U}(3)$ families are indeed found ($N_{\mathrm{ex}}=0$)
These are "dressed" with $N_{\mathrm{ex}}=2,4, \ldots$ excitations

Decomposition by $\mathrm{U}(3)$ content

Expected "valence space" $\mathrm{U}(3)$ families are indeed found ($N_{\mathrm{ex}}=0$)
These are "dressed" with $N_{\mathrm{ex}}=2,4, \ldots$ excitations

Decomposition by $\operatorname{Sp}(3, \mathbb{R})$ content

But excited contributions primarily from same $\operatorname{Sp}(3, \mathbb{R})$ irrep

Decomposition by $\mathrm{U}(3)$ content

Next excitations recognizably form " $2 \hbar \omega$ " $\mathrm{U}(3)$ families ($N_{\mathrm{ex}}=0$)

Decomposition by U(3) content

The $\mathrm{U}(3)$ contents of the $0 \hbar \omega$ and $2 \hbar \omega$ states are quite different...

Decomposition by $\mathrm{Sp}(3, \mathbb{R})$ content

The $\mathrm{U}(3)$ contents of the $0 \hbar \omega$ and $2 \hbar \omega$ states are quite different. . . But the $2 \hbar \omega$ excited states lie within ground state's $\operatorname{Sp}(3, \mathbb{R})$ irrep

Outline

- Symplectic symmetry and the SpNCCI framework
- A first look at symplectic structure of light nuclei

$$
{ }^{6} \mathrm{Li}
$$

- A simple example of convergence
${ }^{3} \mathrm{He}$

Convergence in the SpNCCI framework

Convergence in the SpNCCI framework

Convergence in the SpNCCI framework

Symplectic symmetry: Summary and outlook

Framework for ab initio nuclear NCCI calculation in $\operatorname{Sp}(3, \mathbb{R})$ basis

- Identify lowest-grade U(3) irreps (LGIs) in SU(3)-NCSM space
- SU(3)-NCSM gives "seed" matrix elements for LGIs At low $N_{\text {ex }}$
- Use commutator structure to recursively calculate matrix elements
A. E. McCoy, Ph.D. thesis, University of Notre Dame (2018).
https://github.com/nd-nuclear-theory/spncci
Some very preliminary observations in light nuclei
- Confirm $\operatorname{Sp}(3, \mathbb{R})$ as approximate symmetry Mixing of a few dominant irreps
- Families of states with similar $\operatorname{Sp}(3, \mathbb{R})$ structure

A. E. McCoy, M. A. Caprio, and T. Dytrych, Ann. Acad. Rom. Sci.

Ser. Chem. Phys. Sci. 3, 17 (2018), arXiv:1605.04976.
Computational scheme to be explored and developed

- How high must we go in $N_{\sigma, \text { ex }}$ for $\operatorname{Sp}(3, \mathbb{R})$ irreps?
- Importance truncation of basis by $\operatorname{Sp}(3, \mathbb{R})$ irrep?
I.e., going beyond first baseline implementation, to take full advantage of the approximate symmetry

