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Overview
Symplectic symmetry for ab initio calculations

The ultimate goal of diagonalising a realistic many-nucleon Hamiltonian in
a Sp(3,R) ⊃ SU(3) shell model basis, to obtain a fully microscopic
description of collective states from first principles, and then to use the
Sp(3,R) model . . . to expose the underlying dynamical content of the states
obtained is, as we hope to show, very near at hand . . .

D. J. Rowe, Microscopic theory of the collective nuclear model, Rep. Prog. Phys. 48, 1419 (1985).

⇒ T. Dytrych, K. D. Sviratcheva, J. P. Draayer, C. Bahri, and J. P. Vary, J. Phys. G: Nucl. Part. Phys. 35, 123101 (2008).

Symplectic no-core configuration interaction (SpNCCI) framework
– Intrinsic frame (center-of-mass free) formalism
– Antisymmetric by construction
– Builds on SU(3)-NCSM machinery
– Recursive evaluation of matrix elements

Laddering and commutators
A. E. McCoy, Ph.D. thesis, University of Notre Dame (2018).
A. E. McCoy, M. A. Caprio, and T. Dytrych, Ann. Acad. Rom. Sci.

Ser. Chem. Phys. Sci. 3, 17 (2018), arXiv:1605.04976.
https://github.com/nd-nuclear-theory/spncci
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Outline
– Symplectic symmetry and the SpNCCI framework
– A first look at symplectic structure of light nuclei

6Li

– A simple example of convergence
3He
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Working with symmetries
States are classified into “irreducible representations” (irreps)

Set of states connected by laddering action of generators

Irrep is uniquely defined by extremal state (lowest or highest “weight”)
E.g., for SU(2), irrep with M = −J, . . . ,J is labeled by Mmax ≡ J

Operators classified by tensorial properties
Evaluation of matrix elements using group structure

– Selection rules (block structure)
– Wigner-Eckart theorem Clebsch-Gordan
– Commutators⇒ Recurrence relations

J± |JM〉 ∝ |J(M±1)〉 Ladder

J0 |JM〉 = M |JM〉 Weight (label)

M
-J ∫ J-1 J

J≤ J≤ J≤ J≤ J≤ J≤
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Why Sp(3,R) for the many-body problem?
Generators (i, j = 1,2,3)

Qij = xixj “Quadratic” Pij = xipj + pixj Scaling/deformation

Kij = pipj “Kinetic-like” Lij = xipj− xjpi Rotation

Or, in terms of creation/annihilation operators, and as SU(3) tensors...

b† = 1
√

2

(
x(1)− ip(1)) b̃ = 1

√
2

(
x̃(1) + ip̃(1))

A(20) ∼ b†b† “Raising” ∆N = +2

H(00), C(11) ∼ b†b U(3) generators ∆N = 0

B(02) ∼ bb “Lowering” ∆N = −2

Kinetic energy is linear combination of generators
Kinetic energy conserves Sp(3,R) symmetry, i.e., stays within an irrep

T = H(00)
00 −

√
3
2 A(20)

00 −

√
3
2 B(20)

00
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Symplectic reorganization of the many-body space
– Recall: Kinetic energy connects configurations with N′ex = Nex±2
– But kinetic energy does not connect different Sp(3,R) irreps

T = H(00)
00 −

√
3
2 A(20)

00 −

√
3
2 B(20)

00

– Nucleon-nucleon interaction will still connect Sp(3,R) irreps at low Nex

By how much? How high in Nex will irrep mixing be significant?
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Elliott SU(3) symmetry
Generators of SU(3) ⊃ SO(3)

L(1)
M ∼ (b† × b̃)(1)

M Q(2)
M ∼ (b† × b̃)(2)

M

States classified into SU(3) irreps (λ,µ)
– States are correlated linear combinations of configurations over `-orbitals
– Branching of SU(3)→ SO(3) gives rotational bands (in L)
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SU(3) no-core shell model
Build up many-body NCCI basis states with good SU(3) symmetry

– A single nucleon in shell N = 2n + ` has SU(3) symmetry (N,0)
– Choose a distribution of protons and neutrons over oscillator shells
– Couple all protons or nucleons in single shell to good SU(3) U(ν) ⊃ U(3)
– Couple successive oscillator shells to total SU(3) symmetry

Then apply the SU(3) group theoretical tensor “machinery” for matrix elements
SU(3) coupling and recoupling techniques, SU(3) Wigner-Eckart theorem

T. Dytrych et al., Comput. Phys. Commun. 207, 202 (2016).
T. Dytrych, computer code LSU3shell, http://sourceforge.net/projects/lsu3shell.

Antisymmetry: Implemented in second quantization (c†(0,0) . . .c
†

(N,0))
ωS|〉

Center-of-mass: Factorizes within each U(3)×SU(2) subspace ωS [= N(λµ)S]
F.Q. Luo, M. A. Caprio, T. Dytrych, Nucl. Phys. A 897, 109 (2013).
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Building an Sp(3,R) irrep
Sp(3,R) generators can be grouped into ladder and weight-like operators

A(20) ∼ b†b† “Raising” ∆N = +2

H(00), C(11) ∼ b†b U(3) generators ∆N = 0

B(02) ∼ bb “Lowering” ∆N = −2

Start from single SU(3) irrep at lowest “grade” N

Lowest grade irrep (LGI)

Ladder upward in N using A(20) No limit!

B(02) |σ〉 = 0

|ψω〉 ∼
[
A(20)A(20) · · ·A(20) |σ〉

]ω
Sp(3,R)

σ
⊃
n

U(3)
ω

U(3)
ω
∼ U(1)

Nω
⊗SU(3)

(λω,µω) 16
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Building up the SpNCCI many-body space
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SpNCCI dimensions in Nσ,max truncation
– Take all Sp(3,R) irreps with U(3)×SU(2) LGIs through Nσ,max

– Truncate each of these irreps at Nmax excitation quanta
– For Nσ,max = Nmax: Maps to the center-of-mass free subspace of

the traditional NCCI Nmax space Benchmark!
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Construction of LGIs for SpNCCI Sp(3,R) irreps
How do we identify linear combinations of SU(3)-NCSM
configurations which form SpNCCI LGIs?
– LGIs are annihilated by Sp(3,R) lowering operator B(0,2)

– Center-of-mass free LGIs also have zero eigenvalue of Nc.m.

– Within each SU(3)-NCSM ωS subspace, LGIs span the
simultaneous null space of B(0,2) and Nc.m.

– Solve for simultaneous null vectors of B(0,2) and Nc.m.
[= N −Nintr] within ωS subspace

– Linear combinations obtained using null solver are arbitrary
– Within each Sp(3,R)×SU(2) subspace, can we identify LGIs of

most important irreps, as linear combinations of original LGIs,
and then truncate to those Sp(3,R) irreps?

E.g., Sp(3,R) importance truncation?
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Recursive scheme for SpNCCI matrix elements
Expand Hamiltonian in terms of fundamental SU(3) “unit tensor”
operatorsUN0(λ0,µ0)(a,b)

Analogous to second-quantized expansion of two-body operators in
terms of two-body matrix elements: H ∝

∑
αβγδ 〈αβ|H|γδ〉c

†
αc†βcδcγ

H =
∑
〈a||HN0(λ0,µ0)||b〉 UN0(λ0,µ0)(a,b)

Find expansion for LGIs in SU(3)-NCSM basis
Compute matrix elements ofU between LGIs using SU(3)-NCSM
Compute matrix elements ofU between all higher-lying Sp(3,R) irrep
members via recurrence on N

Action of the lowering operator

J± |JMi =
p

(J ⌥ M)(J ± M + 1) |JM ± 1i

J� |J � Ji = 0

Irreducible representation (irrep) J

M = �J, ..., J

hN 0||U||Ni = hN 0||UA||N � 2i

= hN 0||A U||N � 2i + hN 0||[U , A]||N � 2i

= hN 0 � 2||U||N � 2i + hN 0||[U , A]||N � 2i

H =
X

ha||H||biU(a, b) (1)

Sp(3,R) generators

A
(20)
LM = 1p

2

P
n(b†

n ⇥ b†
n)

(20)
LM symplectic raising

B
(02)
LM = 1p

2

P
n(bn ⇥ bn)

(02)
LM symplectic lowering

C
(11)
LM =

p
2
P

n(b†
n ⇥ bn)

(11)
LM SU(3) generators

H
(00)
00 =

p
3
P

n(b†
n ⇥ bn)

(00)
00 HO Hamiltonian

Sp(3, R) � U(3) � SO(3)
� � !  L

⌦ � SU(2)
SU(2) J

S

(2)

2
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Outline
– Symplectic symmetry and the SpNCCI framework
– A first look at symplectic structure of light nuclei

6Li

– A simple example of convergence
3He
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Structure of the NCCI spectrum of 6Li

“2ℏω”

“0ℏω”

0(2,0)1

2(4,0)1

-30

-25

-20

-15

-10

-5
E
(M
e
V
)

0 1 2 3

J

JISP16 (no Coulomb), SpNCCI, Nσ,max = Nmax = 6, ~ω = 20MeV
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Decomposition of 6Li states by Nex and Nσ,ex

Nex
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JISP16 (no Coulomb), SpNCCI, Nσ,max = Nmax = 6, ~ω = 20MeV
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What we might expect for 6Li from Elliott SU(3)
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Schematic Hamiltonian E = α1Q ·Q +α2L ·S +α3δT=1 , fit to experiment
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Decomposition by U(3) content
Expected “valence space” U(3) families are indeed found (Nex = 0)

These are “dressed” with Nex = 2,4, . . . excitations

6Li
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Decomposition by U(3) content
Expected “valence space” U(3) families are indeed found (Nex = 0)

These are “dressed” with Nex = 2,4, . . . excitations

6Li
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Decomposition by U(3) content
Expected “valence space” U(3) families are indeed found (Nex = 0)

These are “dressed” with Nex = 2,4, . . . excitations

6Li
Nex( ,μ 0(0,1
S=1 T=1

-30

-25

-20

-15

-10

-5

E
(M
e
V

0 1 2 3
J

N
e
x
=
0 Nex=2 Nex=4

U(3) SU(2) 13
+

10-2

10-1

100

N
e
x
=
0 Nex=2 Nex=4

U(3) SU(2) 23
+

10-2

10-1

100

(0
,1
)0

(0
,1
)1

(2
,0
)0

(2
,0
)1

(0
,2
)0

(0
,2
)1

(0
,2
)2

(0
,2
)3

(1
,0
)0

(1
,0
)1

(1
,0
)2

(1
,0
)3

(2
,1
)0

(2
,1
)1

(2
,1
)2

(4
,0
)0

(4
,0
)1

(4
,0
)2

(0
,0
)0

(0
,0
)1

(0
,0
)2

(0
,0
)3

(0
,3
)0

(0
,3
)1

(0
,3
)2

(0
,3
)3

(1
,1
)0

(1
,1
)1

(1
,1
)2

(1
,1
)3

(2
,2
)0

(2
,2
)1

(2
,2
)2

(2
,2
)3

(3
,0
)0

(3
,0
)1

(3
,0
)2

(3
,0
)3

(4
,1
)0

(4
,1
)1

(4
,1
)2

(4
,1
)3

(6
,0
)0

(6
,0
)1

(6
,0
)2

(6
,0
)3

JISP16 (no Coulomb), SpNCCI, Nσ,max = Nmax = 6, ~ω = 20MeV



M. A. Caprio, University of Notre Dame

Decomposition by U(3) content
Expected “valence space” U(3) families are indeed found (Nex = 0)

These are “dressed” with Nex = 2,4, . . . excitations
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Decomposition by Sp(3,R) content
But excited contributions primarily from same Sp(3,R) irrep
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Decomposition by U(3) content
Next excitations recognizably form “2~ω” U(3) families (Nex = 0)
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Decomposition by U(3) content
The U(3) contents of the 0~ω and 2~ω states are quite different. . .

6Li
Nex( ,μ 0(2,0
S=1 T=0

-30

-25

-20

-15

-10

-5

E
(M
e
V

0 1 2 3
J

N
e
x
=
0 Nex=2 Nex=4

U(3) SU(2) 15
+

10-2

10-1

100

N
e
x
=
0 Nex=2 Nex=4

U(3) SU(2) 11
+

10-2

10-1

100

(0
,1
)0

(0
,1
)1

(2
,0
)0

(2
,0
)1

(0
,2
)0

(0
,2
)1

(0
,2
)2

(0
,2
)3

(1
,0
)0

(1
,0
)1

(1
,0
)2

(1
,0
)3

(2
,1
)0

(2
,1
)1

(2
,1
)2

(4
,0
)0

(4
,0
)1

(4
,0
)2

(0
,0
)0

(0
,0
)1

(0
,0
)2

(0
,0
)3

(0
,3
)0

(0
,3
)1

(0
,3
)2

(0
,3
)3

(1
,1
)0

(1
,1
)1

(1
,1
)2

(1
,1
)3

(2
,2
)0

(2
,2
)1

(2
,2
)2

(2
,2
)3

(3
,0
)0

(3
,0
)1

(3
,0
)2

(3
,0
)3

(4
,1
)0

(4
,1
)1

(4
,1
)2

(4
,1
)3

(6
,0
)0

(6
,0
)1

(6
,0
)2

(6
,0
)3

JISP16 (no Coulomb), SpNCCI, Nσ,max = Nmax = 6, ~ω = 20MeV



M. A. Caprio, University of Notre Dame

Decomposition by Sp(3,R) content
The U(3) contents of the 0~ω and 2~ω states are quite different. . .
But the 2~ω excited states lie within ground state’s Sp(3,R) irrep
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Outline
– Symplectic symmetry and the SpNCCI framework
– A first look at symplectic structure of light nuclei

6Li

– A simple example of convergence
3He
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Convergence in the SpNCCI framework

3He
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Symplectic symmetry: Summary and outlook
Framework for ab initio nuclear NCCI calculation in Sp(3,R) basis

– Identify lowest-grade U(3) irreps (LGIs) in SU(3)-NCSM space
– SU(3)-NCSM gives “seed” matrix elements for LGIs At low Nex

– Use commutator structure to recursively calculate matrix elements
A. E. McCoy, Ph.D. thesis, University of Notre Dame (2018).
https://github.com/nd-nuclear-theory/spncci

Some very preliminary observations in light nuclei
– Confirm Sp(3,R) as approximate symmetry

Mixing of a few dominant irreps
– Families of states with similar Sp(3,R) structure

A. E. McCoy, M. A. Caprio, and T. Dytrych, Ann. Acad. Rom. Sci.
Ser. Chem. Phys. Sci. 3, 17 (2018), arXiv:1605.04976.

Computational scheme to be explored and developed
– How high must we go in Nσ,ex for Sp(3,R) irreps?
– Importance truncation of basis by Sp(3,R) irrep?
I.e., going beyond first baseline implementation,
to take full advantage of the approximate symmetry
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