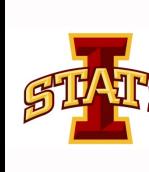
Time-dependent Basis Function (tBF) approach to scattering

James P. Vary with collaborators:

Weijie Du (杜伟杰), Peng Yin (尹鹏), Yang Li (李阳), Guangyao Chen (陈光耀), Wei Zuo (左维), Xingbo Zhao (赵行波) and Pieter Maris arXiv:1804.01156; Phys. Rev. C (in press)

Department of Physics & Astronomy Iowa State University

> Institute of Modern Physics, Chinese Academy of Sciences



MSU, June 15, 2018

Motivations

Challenges in predicting nuclear structure and reactions, e.g.,

- Exotic nuclei, FRIB
- Astrophysics, radiative capture
- Fusion energy, ITER and NIF

These propel development of theories with predictive power:

 Fundamental, unified *ab initio* nuclear theory for nuclear structure and reactions

Background

Existing methods, e.g.,

- No-core Shell Model with Continuum
- No-core Shell Model/Resonating Group Method
- Gamow Shell Model
- Harmonic Oscillator Representation of Scattering Equations
- Green's Function Approaches
- Nuclear Lattice Effective Field Theory
- Many others

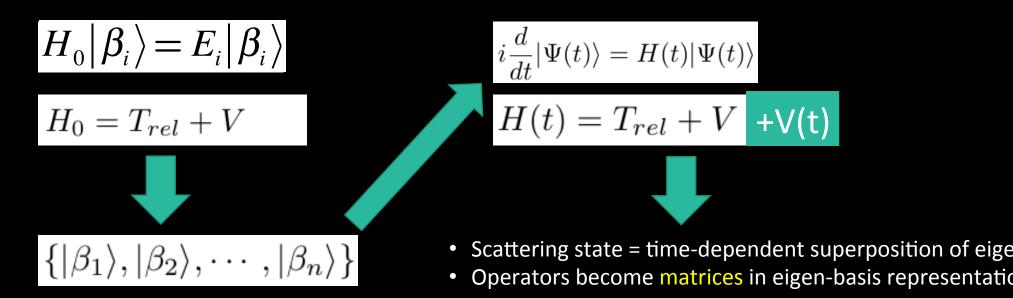
However, these successful methods may be challenged to retain full quantal coherence of all relevant nuclear processes

Ne introduce the time-dependent Basis ⁻unction (tBF) Method

- Ab initio approach
- Non-perturbative
- Retains full quantal interference
- Enables snapshots of dynamics
- Supercomputing directly applicable

Idea of tBF Method

2. Scattering problem



- 1. Solve for the "target" system's eigen-basis via *ab initio* calculation
- 2. Define the scattering state within this eigen-basis and evaluate H(t) in this basis
- 3. Solve the equation of motion in this eigen-basis

Ab initio Structure Calculation of Deuteron

Hamiltonian of the deuteron

$$H_{\rm rel} = T_{\rm rel} + V_{\rm NN}$$

- vith
 - Intrinsic kinetic energy

$$T_{\rm rel} = \frac{P_{\rm rel}^2}{2m}$$

Realistic inter-nucleon interaction

HO Basis for NN Nuclear Structure Calculatior

• Nuclear interaction conserves total angular momentum $\vec{J} = \vec{l} + \vec{S}$

$$\langle B_i \rangle \rightarrow |\{SJM_JT_z\}_i\rangle = \sum_{n,l} a_{nl}^i |nlSJM_JT_z\rangle$$

Excitation quanta for basis space truncation:

$$N = 2n+l$$

3DHO basis wave function in coordinate space

$$\langle \vec{r} | nlSJM \rangle = R_{nl}(r) \sum_{m_l m_s} (lm_l Sm_s | JM) Y_{lm_l}(\Omega_{\hat{r}}) \chi_{Sm_s}$$

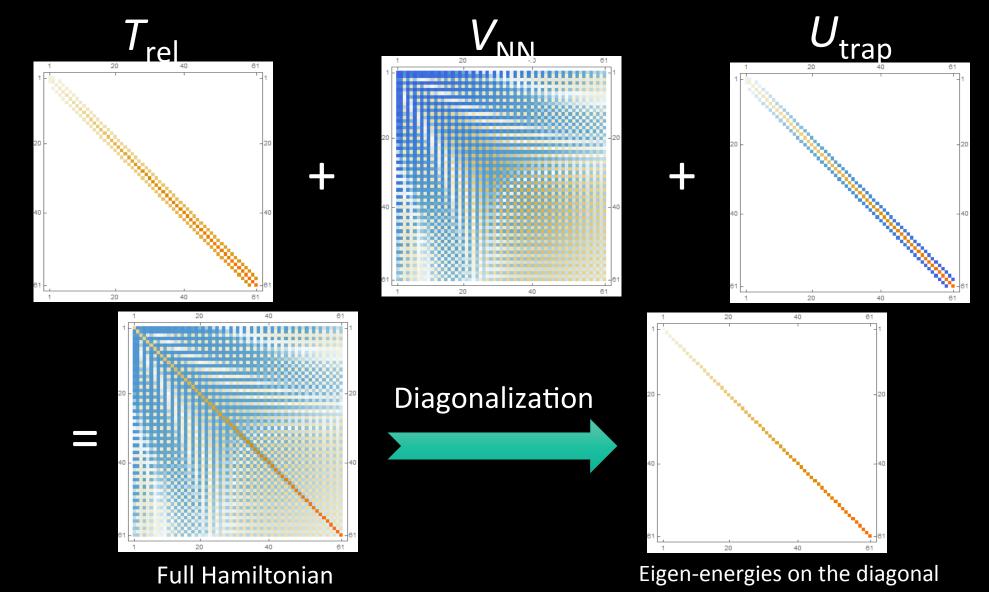
$$R_{nl}(r) = \sqrt{\frac{2n!}{r_0^3 \Gamma(n+l+\frac{3}{2})}} \left(\frac{r}{r_0}\right)^l \exp\left[-\frac{r^2}{2r_0^2}\right] L_n^{l+\frac{1}{2}} \left(\frac{r^2}{r_0^2}\right)$$

- Why 3DHO basis?
 - Respects the symmetries of the nuclear system
 - e.g., rotational and translational symmetries
 - The center of mass motion can be easily removed

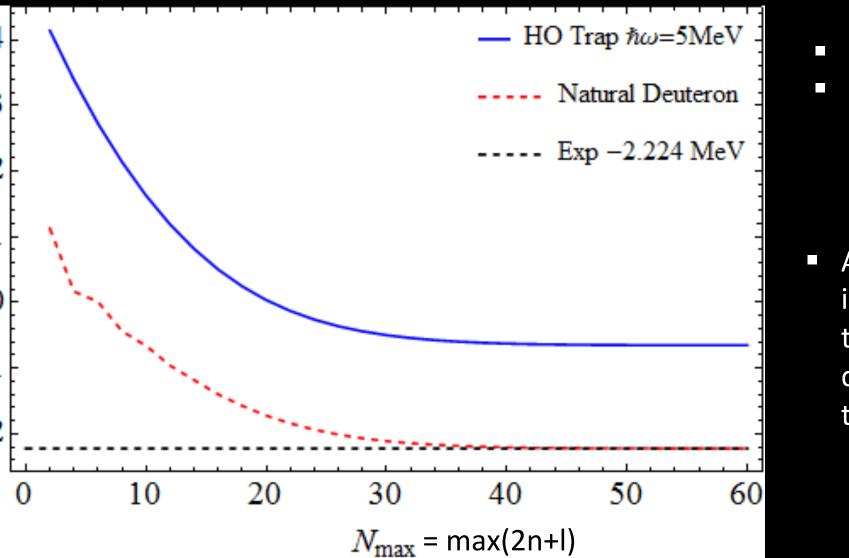
SP16 interaction adopted for the initial applicatior

- Constructed by *J*-matrix inverse scattering theory
- **Reproduces NN scattering data**
- "16" means the interaction is fitted to reproduce some of the properties for ¹⁶O
- Reproduces selected properties of light nuclei
 - e.g., ²H, ³H, ⁴He
- Includes two-nucleon (NN) interaction only
- Non-local interaction
- The interaction in 3DHO representation (matrix elements)

implify the "continuum" => add a HO confining interaction amiltonian for Quasi-deuteron in 3DHO Representation



Results: Ground State Energies for Natural and Quasi-Deuteron



- N_{max}=60;
- Basis strength=5

As the basis space increases in dime theoretical gs en deuteron conver the experimenta

Fime-Dependent Schrödinger Equation

Time-dependent full Hamiltonian

$$H(t) = H_0 + V_{\rm int}(t)$$

- Equation of motion
 - Schrödinger picture

$$i\frac{\partial}{\partial t}|\psi;t
angle = H(t)|\psi;t
angle$$

Interaction picture

$$i\frac{\partial}{\partial t}|\psi;t\rangle_I = e^{iH_0t} V_{\rm int}(t) e^{-iH_0t} |\psi;t\rangle_I \equiv V_I(t) |\psi;t\rangle_I$$

Solve Time-dependent Schrödinger Equation

Equation of motion in interaction picture

$$i\frac{\partial}{\partial t}|\psi;t\rangle_I = V_I(t) |\psi;t\rangle_I$$

Formal solution

$$|\psi; t\rangle_{I} = U_{I}(t;t_{0})|\psi; t_{0}\rangle_{I}$$
$$U_{I}(t;t_{0}) = \hat{T}\left\{\exp\left[-i\int_{t_{0}}^{t}V_{I}(t') dt'\right]\right\}$$

Fransition Amplitudes of States

Vith the basis representation

$$H_0 | \beta_i \rangle = E_i | \beta_i \rangle$$

{ $|\beta_1\rangle, |\beta_2\rangle, \cdots, |\beta_n\rangle$ }

the state vector for the system under scattering becomes

$$|\psi; t\rangle_{I} = \sum_{j=1}^{n} A_{j}^{I}(t) |\beta_{j}\rangle$$
$$|\psi; t_{0}\rangle_{I} \equiv |\beta_{i}\rangle$$

where the transition amplitude is

$$A_{i \to j}^{I}(t) \equiv A_{j}^{I}(t) = \langle \beta_{j} | U_{I}(t; t_{0}) | \beta_{i} \rangle$$

Numerical Method 1: Euler Method

Direct evaluation of the time-evolution operator

$$U_I(t;t_0) = T \exp\left[-i \int_{t_0}^t V_I(t) dt\right]$$

with

$$T \exp\left[-i \int_{t_0}^t V_I(t) dt\right]$$

$$\xrightarrow{\sum \delta t} \left[1 - iV_I(t_n)\delta t + O(\delta t^2)\right] \left[1 - iV_I(t_{n-1})\delta t + O(\delta t^2)\right] \cdots \left[1 - iV_I(t_1)\delta t + O(\delta t^2)\right]$$

- Fast in calculation
- Accurate up to (δt) 12
- Hence poor numerical stability

Numerical Method 2: Multi-Step Differencing

Multi-step differencing (MSD2) for the evolution:

$$\begin{aligned} |\psi;t+\delta t\rangle_{I} &= e^{-iV_{I}(t)\delta t}|\psi;t\rangle_{I} = (1-iV_{I}(t)\delta t+O(iV_{I}(t)\delta t)^{2})|\psi;t\rangle_{I} \\ |\psi;t-\delta t\rangle_{I} &= e^{iV_{I}(t)\delta t}|\psi;t\rangle_{I} = (1+iV_{I}(t)\delta t+O(iV_{I}(t)\delta t)^{2})|\psi;t\rangle_{I} \end{aligned}$$

$|\psi;t+\delta t\rangle_I = |\psi;t-\delta t\rangle_I - 2iV_I(t)\delta t|\psi;t\rangle_I + O(iV_I(t)\delta t)^3)|\psi;t\rangle_I$

- MSD is an explicit method it does not evaluate matrix inversions
- MSD2 is accurate up to $(\delta t)^3$
- MSD4 is accurate up to $(\delta t)^4$, however less efficient
- We employ MSD2 for better numerical stability and efficiency

T. litaka, Phys. Rev. E 49 46 Weijie Du et al., in prepara

First-Order Perturbation Theory

$$; t\rangle_{I} = T exp\left[-i \int_{t_{0}}^{t} V_{I}(t) dt\right] |\psi; t_{0}\rangle_{I}$$

$$\rightarrow \left[1 - i V_{I}(t_{n})\delta t\right] \left[1 - i V_{I}(t_{n-1})\delta t\right] \cdots \left[1 - i V_{I}(t_{1})\delta t\right] |\psi; t_{0}\rangle_{I}$$

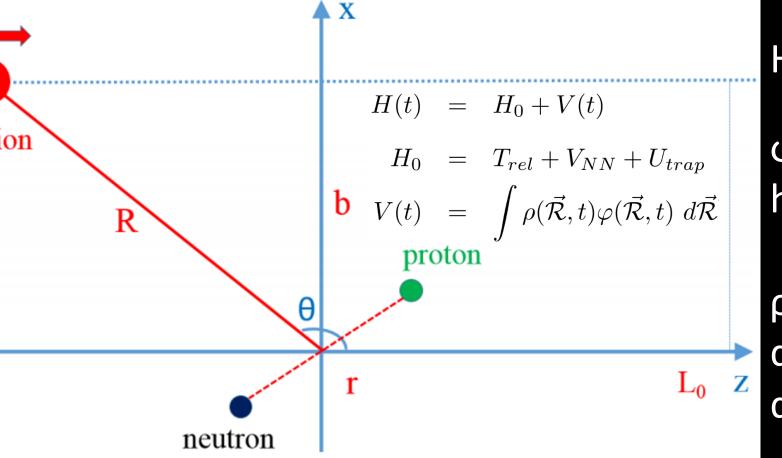
$$\rightarrow \left[1 - i \delta t \left(V_{I}(t_{n}) + V_{I}(t_{n-1}) + \cdots + V_{I}(t_{1})\right)\right] |\psi; t_{0}\rangle_{I}$$

Purposes for this comparison

- tBF method is non-perturbative
- tBF method evaluates all the higher-order effects

First Model Problem: Coulomb Excitation of Deuterium System by Peripheral Scattering with Heavy Ion

Setup: Coulomb Excitation of Deuterium System



H₀: target Hamilt

φ: Coulomb field heavy ion

p: Charge density
 distribution of
 deuteron

Freatment of time-varying Coulomb field

- In the basis representation, the operator for the Coulomb interaction becomes a matrix
- We take a multipole decomposition for the Coulomb field and keep only the E1 multipole component

K. Alder et al., Rev. Mod. Phys. 28, 432 (1956)

$$\langle \beta_j | V_I(t) | \beta_k \rangle = \frac{4\pi}{3} Z e^2 e^{i(E_j - E_k)t} \sum_{\mu} \frac{Y_{1\mu}^*(\Omega_{\hat{R}})}{|R(t)|^2} \langle \beta_j | \frac{r}{2} Y_{1\mu}(\Omega_{\hat{r}}) | \beta_k \rangle$$

E1 transition between bases

E1 Matrix Element in Basis Representation

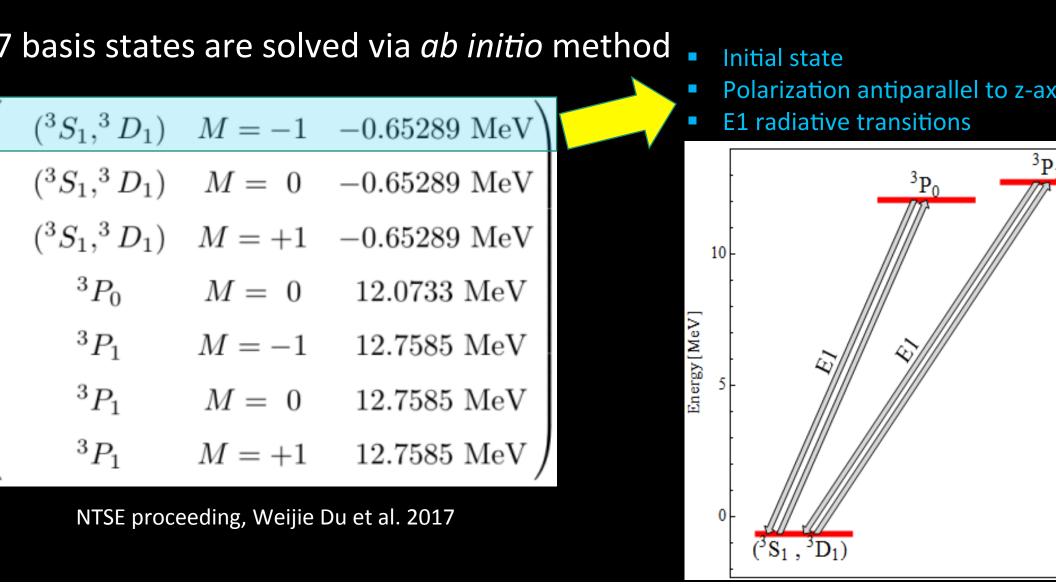
- 1 transition matrix element in the basis representation is evaluated by
 - Basis functions from the *ab initio* structure calculation

$$\left| \left\{ SJM_JT_z \right\}_i \right\rangle = \sum_{n,l} a_{nl}^i \left| nlSJM_JT_z \right\rangle$$

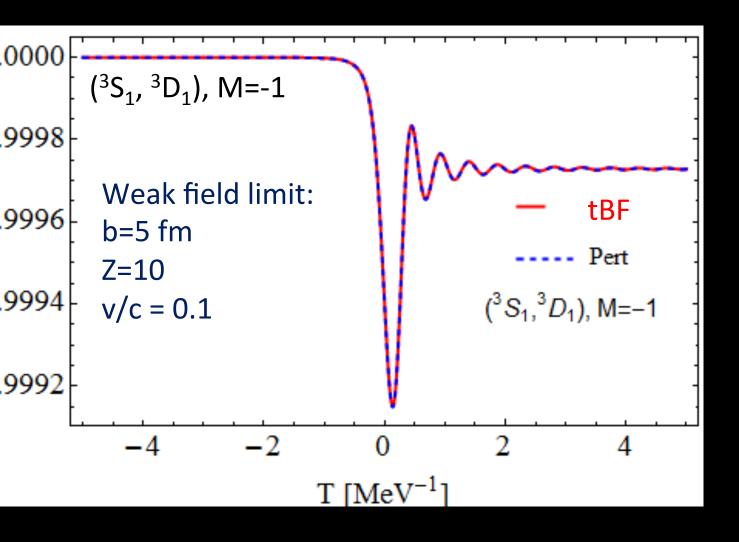
• And the analytic form of the E1 operator in 3DHO representation

$$\begin{split} &\langle n_{j}l_{j}S_{j}J_{j}M_{j}|\frac{r}{2}Y_{1\mu}(\hat{r})|n_{k}l_{k}S_{k}J_{k}M_{k}\rangle \\ =&\sqrt{\frac{1}{4m\Omega}}\sum_{m_{l_{j}}m_{s_{j}}}\sum_{m_{l_{k}}m_{s_{k}}}\delta_{S_{j}S_{k}}\delta_{m_{s_{j}}m_{s_{k}}}(l_{j}m_{l_{j}}S_{j}m_{s_{j}}|J_{j}M_{j})(l_{k}m_{l_{k}}S_{k}m_{s_{k}}|J_{k}M_{k}) \\ &\times (-1)^{m_{l_{j}}}\sqrt{\frac{3(2l_{j}+1)(2l_{k}+1)}{4\pi}} \begin{pmatrix} l_{j} & 1 & l_{k} \\ -m_{l_{j}} & \mu & m_{l_{k}} \end{pmatrix} \begin{pmatrix} l_{j} & 1 & l_{k} \\ 0 & 0 & 0 \end{pmatrix} \\ &\times \begin{cases} \sqrt{n_{j}+l_{j}+\frac{3}{2}} \,\delta_{n_{j}n_{k}} - \sqrt{n_{j}}\delta_{n_{j},n_{k}+1} & \text{for } l_{k} = l_{j}+1 \\ \sqrt{n_{k}+l_{k}+\frac{3}{2}} \,\delta_{n_{j}n_{k}} - \sqrt{n_{k}}\delta_{n_{k},n_{j}+1} & \text{for } l_{j} = l_{k}+1 \\ 0 & \text{else} \end{cases} \end{split}$$

sis Set for Deuteron in Current Calculation



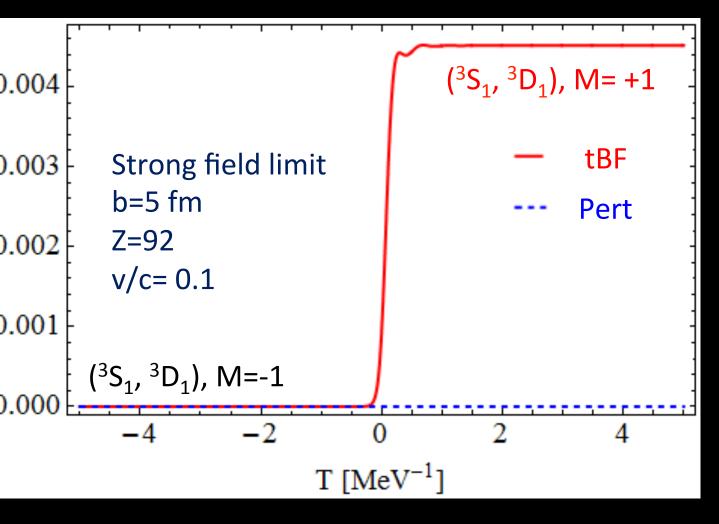
Fransition Probabilities



Validity:

When the Coulomb f is weak, tBF method matches with first or perturbation theory (

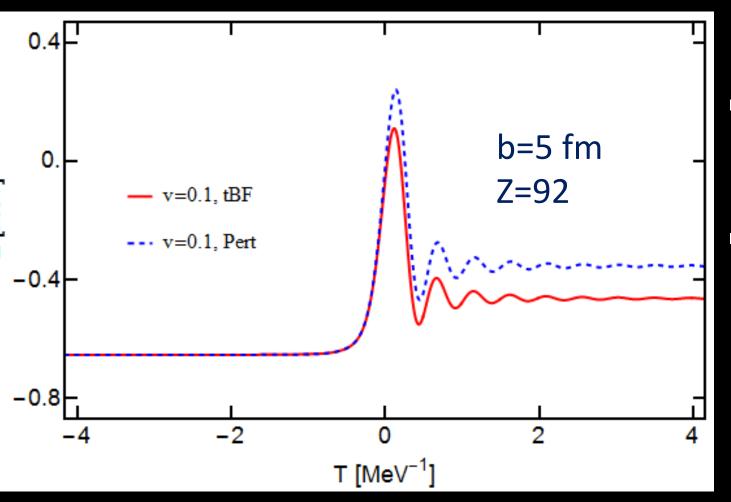
Higher-Order Effects



Forbidden transitio

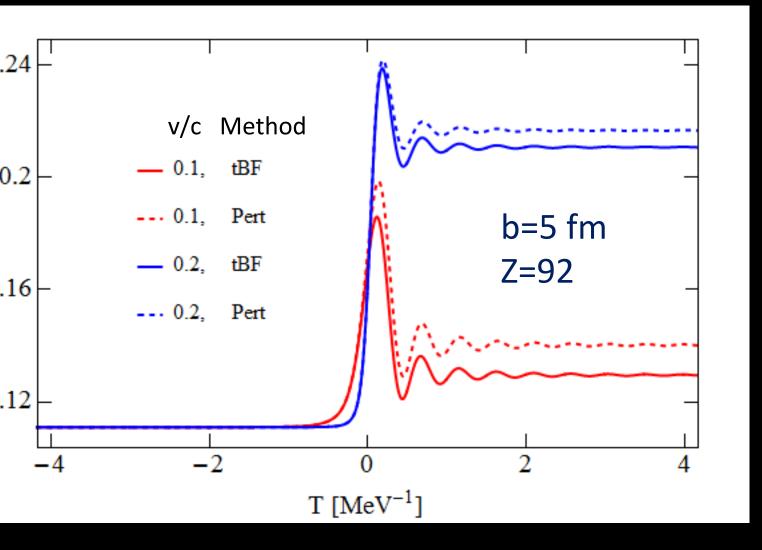
 Revealed by nonperturbative tBF

Excitation of Intrinsic Energy



- Observables as functions of time
- Quantum fluctuation
 are taken care at the amplitude level

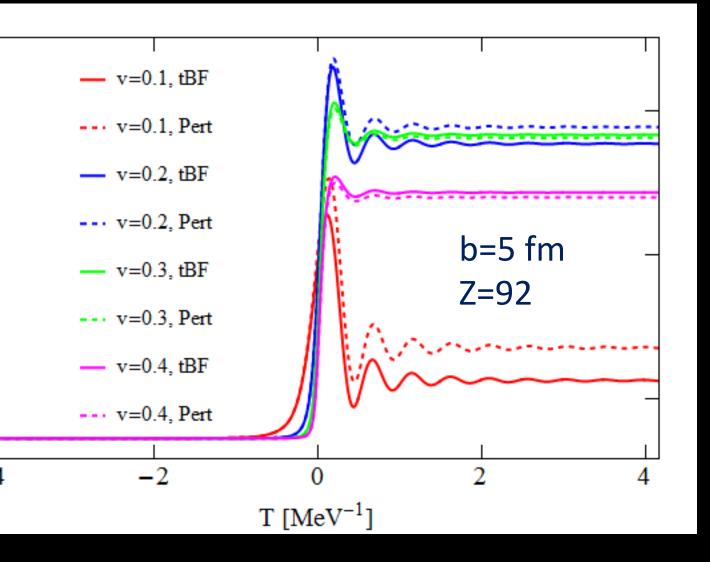
Excitation of Orbital Angular Momentum



Observable's dependence on

- time
- incident spe

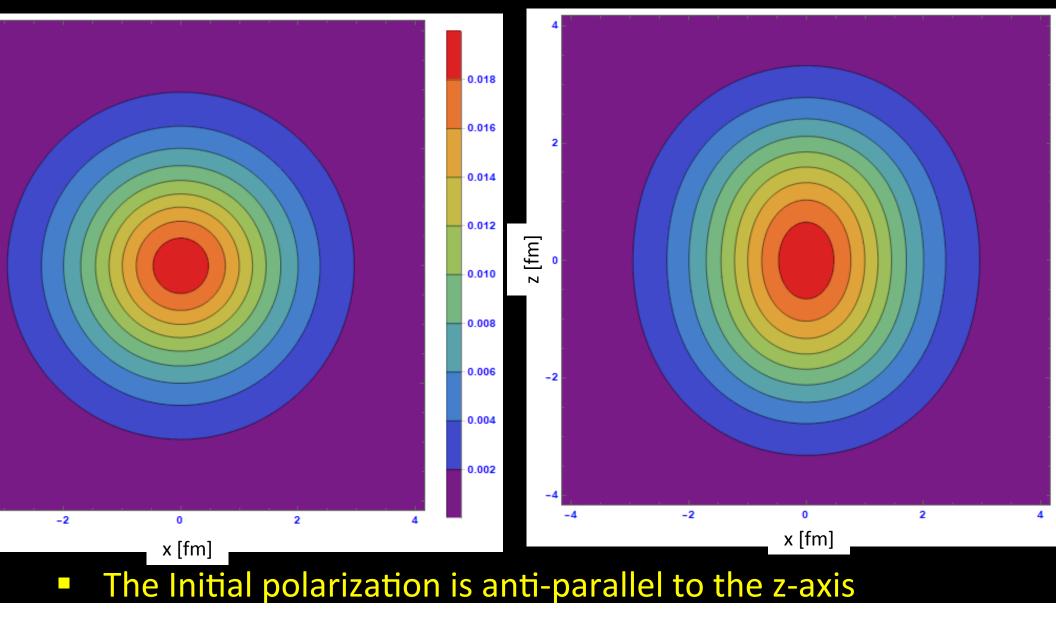
Expansion of r.m.s. Point Charge Radius



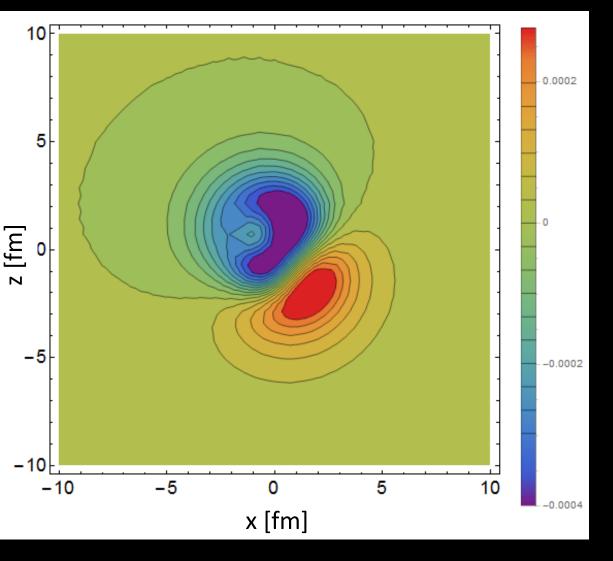
r.m.s. radius of the deuterium system during the scatterir a function of

- time
- incident spee

Dynamics: Charge Density Distribution of Initial np syste

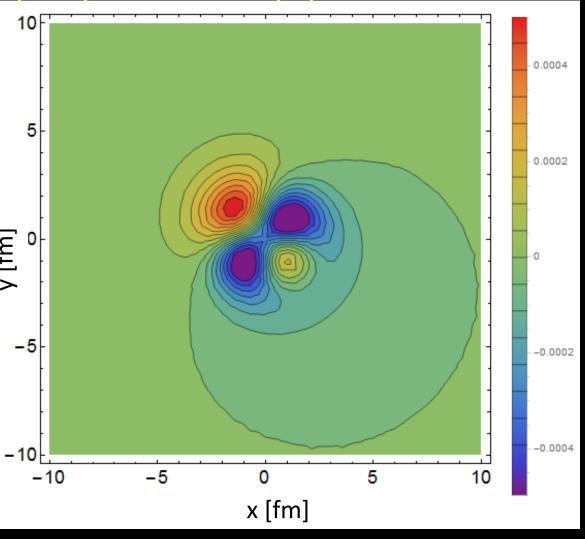


Change in Charge Density Distribution of Scattered np System (x-z plane) at T= 0.23 MeV⁻¹



- The difference in charge density distributions between the evolved and the initial np system
- Note the polarization of the charge density distribution

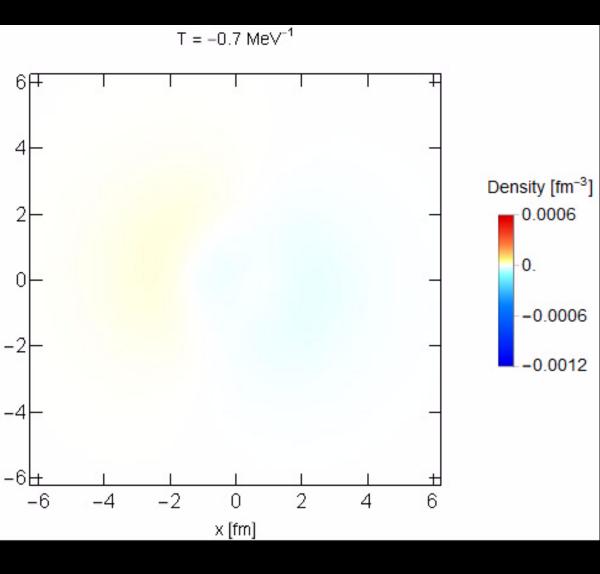
Change in Charge Density Distribution of Scattered np System (x-y plane) at T= 1.975 MeV⁻¹



Density fluctuation

 Excitation of orbita angular momentur

Dynamics Revealed by Animation (x-y Plane)

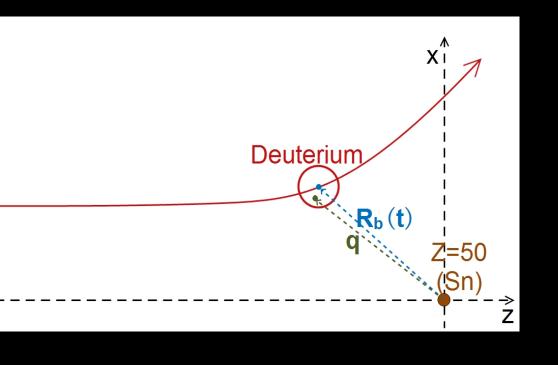


How to interpret?

- The polarization of charged distribution when HI approaches
- The excitation of rotatio degree of freedom
 - The excitation of oscillational degree of freedom

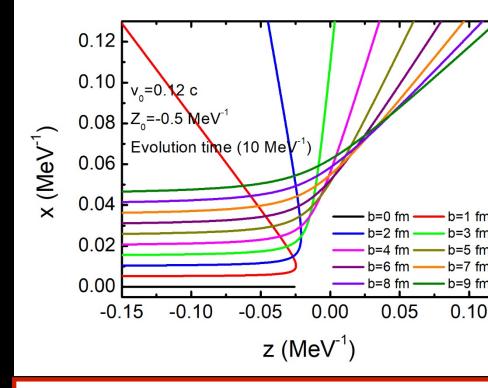
Recent Progress Peng Yin, et al., in preparation

Implement Rutherford Trajectories



$$\frac{d^2\vec{R}}{dt^2} = F_C(R) = Ze^2\frac{\vec{R}}{R^3}$$

quation of Motion



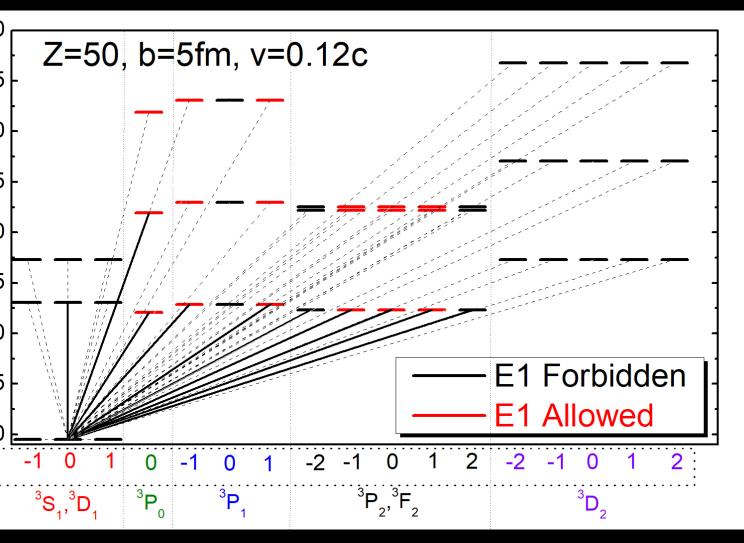
$$\vec{v}(t=0) = \vec{v}_0;$$

$$(x(t=0), z(t=0)) = (b, z_0)$$

Initial Condition

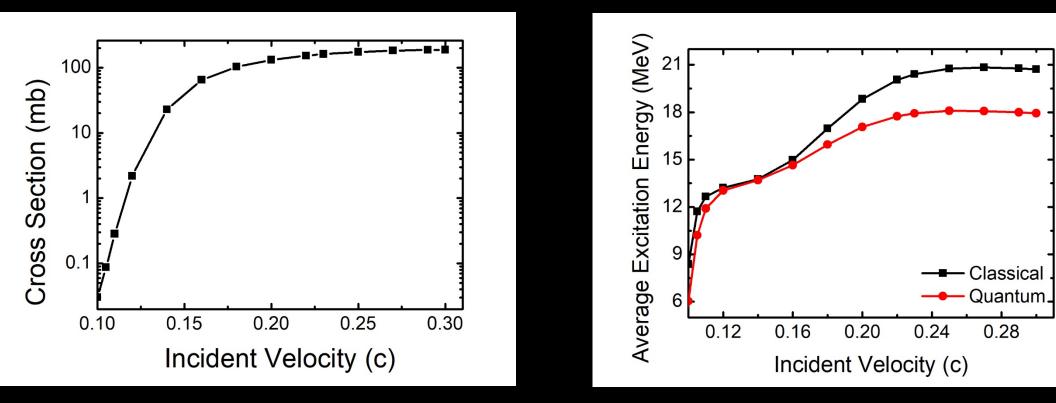
51 States Implementing Daejeon16 NN-interaction

Population in 51 States After Scattering



- Rutherford Scat
- First Order
 Perturbation the vs. MSD2

astic Cross Section and Average Excitation Ene



ss section and average excitation energy increases with incident veloc h cross section and average excitation energy reach saturation at iciently high incident velocity

Summary

- Time-dependent Basis Function (tBF) is motivated by progress both in experimental nuclear physics and in supercomputing techniques
- tBF is a non-perturbative ab initio method for time-dependent problem
- tBF is particularly suitable for strong, time-dependent, field problems
- tBF evaluates at the amplitude level full quantal coherence is retained
- tBF is aimed to provide insights into fundamental structure/reaction issues in a detailed and differentiated manner for nuclear reactions

Outlook

- Observables: differential cross sections with polarization, inclusive non-line inelastic response, contributions of 2-body currents, higher-order electromagnetic couplings, . . .
- Perform calculation in larger basis space and study convergence with respect to density of states in the continuum
- Study the sensitivity with respect to the nuclear Hamiltonian
- Include strong force in the background field
- More realistic center of mass motion
 - Trajectory from QMD
 - Direct computation of relative motion of the two nuclei (e.g. RGM)
- Extend investigations on constraints for the symmetry energy from scattering

Announcement

New faculty position in Nuclear Theory at Iowa State University with support from the DOE Fundamental Interactions Topical Collaboration

Daejeon, South Korea October 29 – November 2, 2018

https://indico.ibs.re.kr/event/216/

Thank you!