"From bound states to the continuum: Connecting bound state calculations with scattering and reaction theory."

Workshop Summary

C. Elster, J. Rotureau

Theory Alliance facility for rare isotope beams

FRIB, East Lansing, MI, June 11-22, 2018.

Challenges:

- * Localized basis e.g. HO basis, usually used in structure approach..
- * How to efficiently account for collectivity, clusterization?
- * How to take into account the non-resonant continuum?
- * How to handle the large dimensionality of the problem?
- * How to obtain a sufficiently precise and accurate reproduction of thresholds ? How to construct effective interactions for reaction models?

No Core Shell Model/Resonating Group Method

S. Quaglioni

* mixed basis

* NN,NNN interaction

*description of short-range many-body and long-range cluster correlations

* applied to nucleon-nucleus, deuteron-nucleus, ³H/He-nucleus collision.....

* complexity of formalism and implementation increases with number of nucleons in the continuum

n+⁴He Scattering Phase Shifts

G. Hupin, S. Quaglioni, and P. Navratil, JPC Conf. Proc. in print, (2015)

Symmetry Adapted No-Core Shell Model (SA-NCSM)

*Basis adapted to describe collective degrees of freedom: rotation, vibration, clusterization.

*Future application to reaction : SA-NSCM/RGM

In Medium Similarity Renormalization Group: (IM-SRG)

H. Hergert

*decoupling of the reference state from excitations.

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)

In Medium Similarity Renormalization Group: (IM SRG)

H. Hergert

N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324; EOM-IMSRG: N. M. Parzuchowski et al., PRC 95, 044304

* complementary correlations can be accounted for by using a reference state obtained from NCSM, HFB, GCM...

<u>Harmonic Oscillator Representation of Scattering Equations</u> (HORSE) /J-matrix

A.Shirokov

*algebraic version of RGM

Reactions with Clusters in Harmonic Oscillator Basis

A.Volya, K.Kravvaris

Resonating group method ⁸Be results

 $\hbar\Omega = 25 \text{ MeV}$

		Theory	Exp.
I=0	ev	8.7	5.6
I=2	MeV	1.3	1.5
I=4	MeV	2.1	3.5

 $\Gamma = 2P_L(\rho_c)|g(\rho_c)|^2$

K Kravvaris and A. Volya, Phys.Rev.Lett, 119(6), 062501 (2017)

Continuum/Berggren basis approaches

Nazarewicz, Fossez, Ploszajczak, Xu, Barrett, Hu, Id Betan, Rotureau

- > Gamow Shell Model (GSM), GSM/Coupled Channel:

phenomenological interaction, halo-EFT "inspired" interaction, MBPT-derived interaction..

$$\underbrace{\sum_{n\in(b,d)}|u_{\ell}(k_n)\rangle\langle \tilde{u}_{\ell}(k_n)|+\int_{\mathcal{L}^+}dk\;|u_{\ell}(k)\rangle\langle \tilde{u}_{\ell}(k)|=\hat{\mathbb{1}}_{\ell,j}.}$$

*eigenstates: $E=Er-i\Gamma/2$ (for bound states $\Gamma=0$ as a result of the calculation.)

 \rightarrow No Core GSM: chiral-EFT interaction, benchmarked with exact approach, nuclei with A<=5 so far.

 \rightarrow Coupled Cluster in the Berggren Basis

<u>Continuum/Berggren basis approaches</u>

Z.H. Sun, Q. Wu, Z.H. Zhao, B.S. Hu , S.J. Dai, F.R. Xu, PLB 2017