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Goal: 
Study the many-body properties in open 
shell nuclei with Fermi level close to the 
continuum threshold or embedded in it 

Outline 
- About representation 

- Single particle representation 
- Single particle level density 
- Single particle complex energy 

- Model interaction: pairing 

- Model solutions 
- Richardson (Exact) 
- Bardeen-Cooper-Schrieffer (BCS) 
- Lipkin-Nogami (LN) 

- Applications: open shell nuclei (constant 
pairing)



ABOUT  RESONANCES 

- Signature in box representation 

- Signature in  real energy representation 

- Signature in complex energy representation 

- Resonances as basis states 



Signature  of   resonances in the  
box  representation

Gadella’s influence in Rosario Gamow’s influence in Nuclear Physics Applications

Single particle resonances

Gamow states in a box

Signature of resonances: box representation (133Sn)
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Signature  of   resonances in the  
real energy representation

Gadella’s influence in Rosario Gamow’s influence in Nuclear Physics Applications

Single particle resonances

Gamow states in the continuum

Signature of the resonances: Single particle density (133Sn)
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Single particle resonances

Gamow states in the continuum

Signature of the resonances: Single particle density (133Sn)
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where the index n = {nb, nc} labels the bound states nb and the box-continuum states nc; repre-
senting the negative and positive energy states respectively, with

v2
nb

= 1
2

(
1 − enb

Enb

)
, v2

nb
+ u2

nb
= 1 (8)

Enb =
√

e2
nb

+ !2 + λ2 (9)

enb = εnb − λ + (4λ2 − G)v2
nb

(10)

λ = λ1 + 2λ2(N + 1) (11)

and the same for the box-continuum states. The pairing gap reads,

! = G

2

∑

n

unvn . (12)

We are now in condition to give the equations for the continuum representation. For this 
purpose we extend the size of the spherical box to infinite. In this limit the single particle density 
for the bound states is represented by 

∑
nb

δ(ε − εnb ). On the other hand, the box-continuum 
states become more dense and are represented by the continuum single-particle level density 
g(ε) [38], with

g(ε) = 1
π

∑

lj

(2j + 1)
dδlj

dε
. (13)

The density for bound and continuum states can be written as

g̃(ε) =
∑

nb

(2jnb + 1)δ(ε − εnb )θ(−ε) + g(ε)θ(ε) . (14)

Magnitudes which in the box representation are calculated as 
∑

n fn, in the continuum repre-
sentation take on the following form:

∑

n

fn →
∑∫

f , (15)

where

∑∫
f =

∞∫

−∞
dε

[
∑

nb

(2jnb + 1)δ(ε − εnb )f (ε)θ(−ε)

+ g(ε)f (ε)θ(ε)
]

=
∑

nb

(2jnb + 1)fnb +
∞∫

0

dε g(ε)f (ε) . (16)

The symbol ∑
∫

denotes both a summation over bound states and an integration over the continuous 
part of the energy spectrum. The integral is calculated using Gauss–Legendre quadrature. Hence, 
the CSPLD contribution seems to be as the natural extension of the contribution of the discrete 
part of the representation.

The BCS equations are obtained by taking λ2 = 0 in the LN equations (5)–(12) with λ1 being 
the Fermi level. For this special case Eqs. (5) and (6) reduce to Eqs. (11) and (10) of Ref. [32]
which include the CSPLD.



Signature  of   resonances in the 
complex energy representation

Poles of the S Matrix for a finite range potential
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Poles of the S Matrix for a finite range potential
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Poles of the S Matrix for a finite range potential
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Shell Model Hamiltonian

H = H0 + U, H0 =
A∑

i=1

h0(i), h0 = t+ v(r)

ψE(r̄) → ψljm(r̄) =
ulj(k, r)

r
Yljm(r̂)

u′′
lj(k, r)−

[
l(l + 1)

r2
+ v(r)

]
ulj(k, r) = k2ulj(k, r)

ϕlj(k, r → 0) −→
rl+1

(2l + 1)!!
flj(±k, r → ∞) −→ e∓ikr e

π
2
l

ϕlj(k, r) =
i

2
k−(l+1)

[
flj(−k)flj(k, r)− (−)lflj(k)flj(−k, r)

]

Slj(k) =
flj(k)

flj(−k)
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Continuum states as basis expansion
Completeness Relation

T. Berggren, Nuclear Physics A 109, 265 (1968).

Glj(k; r, r
′) = (−)l+1 kl

ϕlj(k, r<) flj(−k, r>)

flj(−k)

Im(k)

Re(k)

−L

L

R
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unlj(r) unlj(r′) +

∫
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∫
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6

Completeness Relation

T. Berggren, Nuclear Physics A 109, 265 (1968).

Glj(k; r, r
′) = (−)l+1 kl

ϕlj(k, r<) flj(−k, r>)

flj(−k)

Im(k)

Re(k)

−L

L

R

δ(r − r′) =
∑

nb,na,nd
unlj(r) unlj(r′) +

∫
L dk ulj(k, r) ulj(k, r′)

unlj(r) =
ϕlj(kn,r)

Nn
, ulj(k, r) =

√
π
2 kl+1 ϕlj(k,r)√

flj(−k)flj(k)∫
dr unlj(r) un′lj(r) = δnn′

∫
dr ulj(k, r) ulj(k′, r) = δ(E − E′)

6

Completeness Relation

T. Berggren, Nuclear Physics A 109, 265 (1968).

Glj(k; r, r
′) = (−)l+1 kl

ϕlj(k, r<) flj(−k, r>)

flj(−k)

Im(k)

Re(k)

−L

L

R

δ(r − r′) =
∑

nb,na,nd
unlj(r) unlj(r′) +

∫
L dk ulj(k, r) ulj(k, r′)

unlj(r) =
ϕlj(kn,r)

Nn
, ulj(k, r) =

√
π
2 kl+1 ϕlj(k,r)√

flj(−k)flj(k)∫
dr unlj(r) un′lj(r) = δnn′

∫
dr ulj(k, r) ulj(k′, r) = δ(E − E′)

6

Goal and Introduction Berggren basis Exactly soluble C3p Shadow resonances

Using the poles in a representation

δ(r − r ′) =
∑

n=nb ,na,nd

un(r)un(r
′) +

∫

L

dk u(k , r)u(k , r ′)

f (r) =
∫

δ(r − r ′) f (r ′)dr ′

f (r) =
∑

n=nb ,na,nd

cn un(r) +

∫

L

c(k)u(k , r)dk
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f(r) = ∫ f(r′�) δ(r − r′�) dr′�



MODEL INTERACTION 
For the  

Many-body calculation in open shells

- Single particle basis 

- Model interaction: pairing 

- Correlations between continuum states 



How to Introduce the 
Single Particle Basis in 

Many-Body Calculations

Introduction About the continuum Model interaction About the single particle density Carbon isotopes Complex energy Borromean nuclei

Many-body Hamiltonian

Many-body Hamiltonian

H =
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i<j=1

v(r i , r j)

H =

(
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i=1

v(r i)

)
+

8
<

:

AX

i<j=1

v(r i , r j)�
AX

i=1

v(r i)

9
=

;

Mean-field approximation

H =
AX

i=1

h(r i) + V

Single-particle Beggren representation

h(r)�↵(r) = "↵�↵(r)

Introduction About the continuum Model interaction About the single particle density Carbon isotopes Complex energy Borromean nuclei

Many-body Hamiltonian

Many-body Hamiltonian

H =
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i<j=1

v(r i , r j)

H =

(
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i=1

v(r i)

)
+

8
<

:

AX

i<j=1

v(r i , r j)�
AX

i=1

v(r i)

9
=

;

Mean-field approximation

H =
AX

i=1

h(r i) + V

Single-particle Beggren representation

h(r)�↵(r) = "↵�↵(r)

Introduction About the continuum Model interaction About the single particle density Carbon isotopes Complex energy Borromean nuclei

Many-body Hamiltonian

Many-body Hamiltonian

H =
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i<j=1

v(r i , r j)

H =

(
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i=1

v(r i)

)
+

8
<

:

AX

i<j=1

v(r i , r j)�
AX

i=1

v(r i)

9
=

;

Mean-field approximation

H =
AX

i=1

h(r i) + V

Single-particle Beggren representation

h(r)�↵(r) = "↵�↵(r)

Introduction About the continuum Model interaction About the single particle density Carbon isotopes Complex energy Borromean nuclei

Many-body Hamiltonian

Many-body Hamiltonian

H =
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i<j=1

v(r i , r j)

H =

(
AX

i=1


� ~2

2mi

�
r2

r i
+

AX

i=1

v(r i)

)
+

8
<

:

AX

i<j=1

v(r i , r j)�
AX

i=1

v(r i)

9
=

;

Mean-field approximation

H =
AX

i=1

h(r i) + V

Single-particle Beggren representation

h(r)�↵(r) = "↵�↵(r)

SPR 2/3

Summary

Time delay

Resonance 1/2

Resonance 2/2

S-poles

SPD 1/2

BR

AB state

SM 1/2

SM 2/2

SPR 1/3

◃ SPR 2/3

SPR 3/3

Ex. 1/2

Ex. 2/2

TPSM 1/3

TPSM 2/3

TPSM 3/3

Ex. 1

Ex. 2

IAS 1/3

IAS 2/3

IAS 3/3

GPR
10Li
11Li 1/3

11Li 2/3

11Li 3/3

BCS 1/2

BCS 2/2

QRPA 1/3

QRPA 2/3

QRPA 3/3

LN-BCS

13 / 40

Wave functions and normalization

unlj(r) = ϕlj(kn,r)
Nn

, ulj(k, r) =
√

π
2 kl+1 ϕlj(k,r)√

flj(−k)flj(k)

∫
dr unlj(r) un′lj(r) = δnn′

∫
dr ulj(k, r) ulj(k′, r) = δ(E − E′)

N2
n =

∫
dr ϕ2

lj(kn, r)

δ(r − r′) =
∑

nb,nv,nr
unlj(r) unlj(r′) +

∫
L dk ulj(k, r) ulj(k, r′)

Computer Code: ANTI

L. Gr. Ixaru, M. Rizea, T. Vertse, Comp. Phys. Comm. 85, 217 (1995).

Regularization
Ya. B. Zel’dovich, JETP (Sov. Phys.) 12, 542 (1961).

B. Gyarmati, T. Vertse, Nuclear Physics A 160, 523 (1971).

SPR 2/3

Summary

Time delay

Resonance 1/2

Resonance 2/2

S-poles

SPD 1/2

BR

AB state

SM 1/2

SM 2/2

SPR 1/3

◃ SPR 2/3

SPR 3/3

Ex. 1/2

Ex. 2/2

TPSM 1/3

TPSM 2/3

TPSM 3/3

Ex. 1

Ex. 2

IAS 1/3

IAS 2/3

IAS 3/3

GPR
10Li
11Li 1/3

11Li 2/3

11Li 3/3

BCS 1/2

BCS 2/2

QRPA 1/3

QRPA 2/3

QRPA 3/3

LN-BCS

13 / 40

Wave functions and normalization

unlj(r) = ϕlj(kn,r)
Nn

, ulj(k, r) =
√

π
2 kl+1 ϕlj(k,r)√

flj(−k)flj(k)

∫
dr unlj(r) un′lj(r) = δnn′

∫
dr ulj(k, r) ulj(k′, r) = δ(E − E′)

N2
n =

∫
dr ϕ2

lj(kn, r)

δ(r − r′) =
∑

nb,nv,nr
unlj(r) unlj(r′) +

∫
L dk ulj(k, r) ulj(k, r′)

Computer Code: ANTI

L. Gr. Ixaru, M. Rizea, T. Vertse, Comp. Phys. Comm. 85, 217 (1995).

Regularization
Ya. B. Zel’dovich, JETP (Sov. Phys.) 12, 542 (1961).

B. Gyarmati, T. Vertse, Nuclear Physics A 160, 523 (1971).

h(r̄) = −
ℏ2

2μ
∇2 + v(r)



Model Interaction

About the continuum Model interaction Model solution Applications Applications: Complex Representation Applications: Borromean nuclei
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About the limitations of  the  
pairing interaction

About the continuum Complex Energy Shell Model Many-body system Carbon isotopes Coupled-equation

Carbon isotopes

Ground state energyMissing correlations

About the continuum Complex Energy Shell Model Many-body system Carbon isotopes Coupled-equation
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FIG. 2: Single-particle spectrum for the l = 0 partial wave for the system cited in the paragraph without (on the left) and with
mean-field (on the right). The radius of the box is R = 25fm

0 5 10 15 20 25 30 35 40
Energy [MeV]

0
1
2
3
4
5
6

Ph
as

e 
sh

ift

0 5 10 15 20 25 30 35 40
Energy [MeV]

0
0.1
0.2
0.3
0.4
0.5
0.6

g g 9/
2 [1

/M
eV

]

FIG. 3: Phase shift and single-particle level density for the partial wave g9/2.

the phase shift and the corresponding partial CSPLD for the core state g9/2. We observe that the density is negative
even at high energy. This is an ’inevitable’ behavior since the phase shift has to go to zero asymptotically according
to our choice: δ(+∞) = 0.

For any nuclear potential there is a highest partial wave with bound orbit. For this partial wave and for the higher
ones the phase shift starts to increase from zero at � = 0 and after reaching a maximum it goes to zero asymptotically.
This implies that the partial-wave CSPLD will be positive at low energy and negative asymptotically. So the CSPLD
will not diverge because this negative contribution at high energies, Fig. 4.

By increasing lmax, the continuum single-particle level density is affected only in the tail. It is because for large
partial waves the centrifugal barrier is so high for low and medium energy that the phase shift goes to zero in that
region and the partial-wave CSPLD also tends to zero. In Fig. 4 one can see that the CSPLD stabilizes for energies
smaller than 20 MeV at lmax around 15, while for energies less than 100 MeV it stabilizes for lmax around 20.
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FIG. 1: Phase shift and single-particle level density for the partial wave l=0.

g(�) =
lmaxX

lj

(2j + 1) glj(�) (44)

glj(�) =
1
π

dδlj

d�
(45)

With the usual convention lim�→∞δlj(�) = 0, the phase shift at zero energy is determined by the Levinson theorem
as δlj(0) = nljπ [36]. Here nlj denotes the number of bound states in the potential above for the partial wave {lj}.
The partial single-particle density can be either positive or negative depending on the sign of the derivative of the
phase shift. For example if for a specific {lj} partial-wave there are no resonance and nlj �= 0, the phase shift will
decrease monotonically from nljπ to zero [36] and the partial CSPLD will be negative for all values of the energies
up to infinity.

As an example we show in Fig. 1 the phase shift for the partial wave l = 0 in the potential define above. It starts
from 3π because there are three s1/2 bound states in this potential and decreases very slowly. We calculated the
phase shift up to �max = 1000 MeV , where the phase shift value is 0.96. This shows that it decreases really very
slowly. Fig. 1 also shows the corresponding partial CSPLD. We can see that it is negative with (in modules) a large
amplitude near the threshold and its magnitude decreases (in modulus) very fast.

A negative value for the level density is unexpected. This is a consequence of our definition of the CSPLD, i.e.
because the subtraction procedure [30]. So we must re-interpreted this result. This will be done in the next paragraph.

The CSPLD g(�) at low energies is dominated for this negative value. One can understood this not desired behavior
for the density if one remembers that it is defined as the difference between the level densities of the systems with
potential and without it. In Fig. 2 we show the spectrum for these two cases when the systems are put into a box
with radius R = 25fm. We can see that there are more levels at low energies for the free system than for the potential
one. The extra levels in the free system are just those levels which will became bound in the system with potential.
So, one can guess that the negative CSPLD is a (accumulative) sign of the bound state(s). But the bound states
were considered already in the representation (in the bound state model space), so we may want to omit them in the
continuum single-particle level density g(�), i.e. the CSPLD contains only those partial waves which correspond to
increasing scattering phase shifts (near the threshold).

Using the previous argument one could think that all partial waves which form the core and the bound valence
space should be omitted from the CSPLD, but this is not like that, because for nlj �= 0 under the presence of resonant
state, the phase shift will increase up from nljπ to a maximum and then it will decrease to zero [36]. Fig. 3 shows
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g
(f ree)
lj (ε) = lim

R→∞

√
µ

2π2h̄2ε
R (A.8)

By taking advantage that g(total)
lj and g(f ree)

lj have both the same divergence as a function 
of the box radius, we used the following recipe in the limit of an infinite box (transition to the 
continuum) [22] for a fixed partial wave (lj),

lim
R→∞

⎡

⎢⎣
∑

n ,εnlj >0

flj (knlj ) −
∑

n ,ε
(0)
nlj >0

flj (k
(0)
nlj )

⎤

⎥⎦=
∞∫

0

glj (ε)flj (ε)dε (A.9)

where glj is the partial wave single particle level density with the free nucleons density subtracted

glj (ε) = 1
π

dδlj

dε
(A.10)

i.e., the density so defined is the change in the density of single particle states at the energy ε
due to the interaction [46]. With the usual convention limϵ→∞ δlj (ϵ) = 0, the phase shift at zero 
energy is determined by the Levinson theorem as δlj (0) = nljπ [47]. The partial density glj (ε)

may be either positive or negative depending on the sign of the derivative of the phase shift. For 
example if for a specific {lj} there are no resonance and nlj ≠ 0, the phase shift will decrease 
monotonically from nljπ to zero [47] and the partial CSPLD will be negative for all values of 
the energies up to infinity. The draw-back of this “density” to be negative is compensated by the 
fact that it gives the structure of the continuum, i.e. for resonant partial wave glj (ε) is positive 
around the resonant energy and its amplitude much bigger than for non-resonant partial waves.

The continuum single particle level density (CSPLD) results from the sum of each partial 
wave CSPLD glj ,

g(ε) =
∑

lj

(2j + 1)glj (ε) (A.11)
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This asymptotic behavior together with the condition that for a given partial-wave the phase 
shift tends to zero as k → ∞, determine δlj (k) within a multiple of π . An increase of the orbital 
angular momentum makes the single-particle mean-field less important, and for this reason it 
makes sense to used an orbital angular momentum cutoff lmax.

One can discretize the continuum scattering states energy ε by putting the system into a large 
spherical box with radius R. Then, the box boundary condition, ulj (k, R) = 0 forces the con-

tinuous spectrum to have discrete values εnlj = h̄2

2µk2
nlj . The parameter n denotes the number of 

nodes (counting the ones at r = 0) of the function unlj (r) = ulj (knlj , r) in the interval [0, R). 
The relation between the number of nodes and the phase shift δlj can be obtained through the 
asymptotic expression (A.1) and the boundary condition, given

knljR −l
π

2
+ δlj (knlj ) = nljπ (A.2)

If for fixed {l, j} one orders the states εnlj according to the number of nodes of unlj , then nlj

gives the number of levels (without counting the degeneracy) between the bottom of the single 
particle potential and the energy εnlj [22]. In the limit of the box going to infinity the spectrum 
εnlj becomes continuous and a magnitude like 

∑
n f (kn) changes to [45]

lim
R→∞

∑

n

flj (knlj ) =
∫

dk

(
dnlj

dk

)
flj (k) (A.3)

with dnlj

dk = lim$k→0
$nlj

$k . Here $nlj = nlj (k + $k) −nlj (k) gives the contribution of all states 
for which k lies between k and k + $k. Using the expression (A.2) we get

dnlj

dk
= 1

π

[
R + dδlj

dk

]
(A.4)

The summation in (A.3) includes negative-energy bound states and positive-energy discretized 
continuum states. Single particle energies in the core of Borromean systems are exclusively pos-
itive. Then, in the limit R → ∞ we would have

lim
R→∞

∑

n ,εnlj >0

flj (knlj ) =
∞∫

0

g
(total)
lj (ε)flj (ε)dε (A.5)

where we introduce the total partial wave energy density

g
(total)
lj (ε) = lim

R→∞

[√
µ

2π2h̄2ε
R + 1

π

dδlj

dε

]
(A.6)

The first term, which diverges with the size of the box corresponds to the density of the free 
nucleon. This can be seen by doing an analogous analysis when the nuclear mean field is zero. 
In such a case we would have in the passing to the limit,

lim
R→∞

∑

n ,ε
(0)
nlj >0

flj (k
(0)
nlj ) =

∞∫

0

g
(f ree)
lj (ε)flj (ε)dε (A.7)

where ε(0)
nlj = h̄2

2µ [k(0)
nlj ]2 are the positive discrete eigenvalues (notice that the condition ε(0)

nlj > 0 is 
redundant for the free nucleons in the box) and
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where the index n = {nb, nc} labels the bound states nb and the box-continuum states nc; repre-
senting the negative and positive energy states respectively, with

v2
nb

= 1
2

(
1 − enb

Enb

)
, v2

nb
+ u2

nb
= 1 (8)

Enb =
√

e2
nb

+ !2 + λ2 (9)

enb = εnb − λ + (4λ2 − G)v2
nb

(10)

λ = λ1 + 2λ2(N + 1) (11)

and the same for the box-continuum states. The pairing gap reads,

! = G

2

∑

n

unvn . (12)

We are now in condition to give the equations for the continuum representation. For this 
purpose we extend the size of the spherical box to infinite. In this limit the single particle density 
for the bound states is represented by 

∑
nb

δ(ε − εnb ). On the other hand, the box-continuum 
states become more dense and are represented by the continuum single-particle level density 
g(ε) [38], with

g(ε) = 1
π

∑

lj

(2j + 1)
dδlj

dε
. (13)

The density for bound and continuum states can be written as

g̃(ε) =
∑

nb

(2jnb + 1)δ(ε − εnb )θ(−ε) + g(ε)θ(ε) . (14)

Magnitudes which in the box representation are calculated as 
∑

n fn, in the continuum repre-
sentation take on the following form:

∑

n

fn →
∑∫

f , (15)

where

∑∫
f =

∞∫

−∞
dε

[
∑

nb

(2jnb + 1)δ(ε − εnb )f (ε)θ(−ε)

+ g(ε)f (ε)θ(ε)
]

=
∑

nb

(2jnb + 1)fnb +
∞∫

0

dε g(ε)f (ε) . (16)

The symbol ∑
∫

denotes both a summation over bound states and an integration over the continuous 
part of the energy spectrum. The integral is calculated using Gauss–Legendre quadrature. Hence, 
the CSPLD contribution seems to be as the natural extension of the contribution of the discrete 
part of the representation.

The BCS equations are obtained by taking λ2 = 0 in the LN equations (5)–(12) with λ1 being 
the Fermi level. For this special case Eqs. (5) and (6) reduce to Eqs. (11) and (10) of Ref. [32]
which include the CSPLD.

Richardson equations

The level density contains the resonant  
and  non resonant continuum 
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purpose we extend the size of the spherical box to infinite. In this limit the single particle density 
for the bound states is represented by 

∑
nb

δ(ε − εnb ). On the other hand, the box-continuum 
states become more dense and are represented by the continuum single-particle level density 
g(ε) [38], with

g(ε) = 1
π

∑
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(2j + 1)
dδlj

dε
. (13)

The density for bound and continuum states can be written as

g̃(ε) =
∑
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(2jnb + 1)δ(ε − εnb )θ(−ε) + g(ε)θ(ε) . (14)

Magnitudes which in the box representation are calculated as 
∑

n fn, in the continuum repre-
sentation take on the following form:

∑
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∑
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∞∫

0

dε g(ε)f (ε) . (16)

The symbol ∑
∫

denotes both a summation over bound states and an integration over the continuous 
part of the energy spectrum. The integral is calculated using Gauss–Legendre quadrature. Hence, 
the CSPLD contribution seems to be as the natural extension of the contribution of the discrete 
part of the representation.

The BCS equations are obtained by taking λ2 = 0 in the LN equations (5)–(12) with λ1 being 
the Fermi level. For this special case Eqs. (5) and (6) reduce to Eqs. (11) and (10) of Ref. [32]
which include the CSPLD.
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Npair∑
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1

Ej − Ei
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Npair∑

i=1

Ei

Compare with…
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FIG. 1. Neutron CSPLD in 12C for two different angular momen-
tum cutoffs.

with c
†
ᾱ = (−)ja−mα c

†
a−mα

. We introduce the pair creation
operator

A†
a =

∑

mα>0

c†α c
†
ᾱ, (2)

which creates a pair of time-reversal states with quantum
number a.

Following Von Delft and Braun [6], who were inspired by
a suggestion by Richardson, we propose the N -body (N =
2Npair) eigenfunction as the antisymmetrized product of Npair
wave functions as

|"⟩ =
Npair∏

i=1

(
∑

a

A
†
a

2εa − Epi

)

|0⟩, (3)

where the energies Epi
are related to the eigenvalues E of the

Hamiltonian HP by

E =
Npair∑

i=1

Epi
. (4)

In order to meet the eigenvalue equation HP |"⟩ = E |"⟩,
the parameters Epi

, called pair energies, must verify the
following set of Npair couple system of equations [6]:

1 − G

2

∑

a

2ja + 1
2εa − Epi

+ 2G

Npair∑

j ̸=i

1
Epj

− Epi

= 0, (5)

where the first summation contains negative and positive
energies. The interpretation of this set of equations, called
Richardson equations, is that the many-body fermions with

TABLE I. Pairing strength used for the carbon isotopes.

Isotope G (MeV)
14C 0.7786
16C 0.6813
18C 0.6056
20C 0.5450
22C 0.4955
24C 0.4542

TABLE II. Pair energies Ei and ground-state energies E0 relative
to carbon 12C for the carbon isotopes 14C– 24C. We used Ei for Epi

.
The collectivity parameter γ was defined in the text.

Isotope Npair Ei (MeV) E0 (MeV) γ

14C 1 E1 = −11.398 −11.398 —
16C 2 E1 = −10.681 −17.051 —

E2 = −6.370
18C 3 E1 = −10.495 −20.394 —

E2,3 = (−4.950; ± 1.262)
20C 4 E1 = −10.379 −22.194 0.75

E2 = −4.502
E3,4 = (−3.667; ± 1.546)

22C 5 E1 = −10.302 −22.915 0.8
E2,3 = (−3.729; ± 0.110)
E4,5 = (−2.578; ± 1.361)

24C 6 E1 = −10.254 −19.605 0.5
E2 = −3.924
E3 = −3.099
E4,5 = (−2.479; ± 0.969)
E6 = 2.630

pairing force behave like the many-boson system with one-
body force. Both systems are described by the same wave
function, with the difference that the fermions have to satisfy
the Richardson equations (5) in order to fulfill the Pauli
principle [1,5].

B. Continuum real energy

In making the limit of the box to infinity the single-particle
states becomes more and more dense. In that limit the sum
becomes an integral, that is,

∑

a

(2ja + 1)
V →∞−−−→

∫ ∞

−∞
g̃(ε) dε. (6)

The single-particle density g̃(ε) is the sum of the bound
(negative-energy) states plus the continuum (positive-energy)
states. We make the anzatz that the single-particle density in
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FIG. 2. Distribution of the four pair energies in 20C isotope (dark
dots). The white diamonds correspond to the pair energies for G = 0,
i.e., Ei = 2εi .
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TABLE III. Excited and pair energies of 14C. The energies are in MeV.

Config ν State Npair Epi
E Ex

(1)2 0 0+ 1 Ep1 = −11.398 −11.398 0
(1)(2) 2 0−, 1− 0 −6.803 4.594
(1)(3) 2 2−, 3− 0 −6.039 5.358
(2)2 0 0+ 1 Ep2 = −5.760 −5.760 5.638
(3)2 0 0+ 1 Ep3 = −3.168 −3.168 8.229
(2)(3) 2 2+ 0 −2.950 8.447
(3)(3) 2 2+, 4+ 0 −1.093 10.304

make E =
∑

i Epi
real. In Eq. (14) we have assumed that

there is not a blocking effect due to continuum states.
For the seniority 0 case and neglecting the background,

Eq. (14) reduces to the Richardson equations in the Gamow
basis introduced in Ref. [9]. In this case the complex pairing
energies are not complex conjugate to each other; that is, E =∑

i Epi
may be complex.

D. Exact spectrum

The solution of the Richardson equations (8) with the
“boundary condition,”

limG→0+Epi
= 2εpi

, (16)

and the blocking effect, determine the ground-state and the
excited-state energies of the pairing Hamiltonian.

The 12C nucleus has three bound configurations
(Sec. III A1). The first (1) and second (2) configurations can
accommodate a single pair, while the third configuration (3)
can accommodate three pairs. The configurations (1), (2),
and (3) are related to the single-particle states 0p1/2, 1s1/2,
and 0d5/2, respectively. Then εp1 = ε0p1/2 , εp2 = ε0s1/2 , and
εp3 = εp4 = εp5 = ε0d5/2 . From the bound configurations we
can accommodate up to five pairs (22C). Because of the
inclusion of the continuum we will be able to go beyond the
nucleus 22C.
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FIG. 6. Exact low-energy spectrum of 14C for seniority 0 and 2
compared with experimental levels [29]. The energies are in keV.

1. Ground state

The ground-state (g.s.) configuration for a system with
Npair corresponds to fill the lowest Npair configurations by
solving the Richardson Eq. (8) with the blocking coefficient
db = 2jb + 1 because the g.s. has seniority 0 and there are
no unpaired states (all Nb = 0). For example, the g.s. of the
isotope 14C corresponds to solving one single Richardson
equation (8) with the boundary condition limG→0+Ep1 = 2εp1 .
Let us called this configuration (1)2. The g.s. of the isotope 16C
corresponds to solving two Richardson equations (8) with the
boundary conditions limG→0+Ep1 = 2εp1 and limG→0+Ep2 =
2εp2 . This is the configuration (1)2(2)2, and so on. The
ground-state energy E is given by Eq. (4) with Npair = 1, 2
and so on.

2. Excited states

We have to distinguish between excited states with seniority
0 and seniority 2.

Seniority 0 (ν = 0). The seniority 0 excited states are
found by solving as many equations (8) as pairs, like for
the g.s., but with a boundary condition other than the ground
state. For example, the first and second 0+ excited states of
14C are found as the solution of a single equation with the
boundary conditions limG→0+Ep2 = 2εp2 and limG→0+Ep3 =
2εp3 , respectively. We called such configurations (2)2 and (3)2.
As a second example, let us consider the first 0+ excited
state of 18C. It is found by solving three equations (8) with
the boundary conditions limG→0+Ep1 = 2εp1 , limG→0+Ep2 =
2εp3 , and limG→0+Ep3 = 2εp3 . We called this configuration
(1)2(3)4. The energy E of the ν = 0 excited state is like Eq. (4)
but using the excited pair energies.

Seniority 2 (ν = 2). The seniority 2 states are found by
solving Npair = (A − 12) − ν equations (8), where A is the
mass number of the isotope. This is one equation less than
the number of pairs in the ground state. The factor db in
Eq. (8) is given by db = 2jb + 1 − 2Nb, where b labels the
blocking configuration. For example, to find the ν = 2 states
in 14C one does not need to solve any equation since Npair =
(14 − 12) − 2 = 0. The ν = 2 state energy is just the sum
of the single-particle energies E = εl + εm of the unpaired
levels l and m. Let us assumed that the blocking states for the
isotope 16C are the configurations (2) and (3), that is, N1 = 0,
and N2 = N3 = 1. Then, we have to solve a single equation
with d1 = 2, d2 = 0 and d3 = 8 and the boundary condition
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real. In Eq. (14) we have assumed that

there is not a blocking effect due to continuum states.
For the seniority 0 case and neglecting the background,

Eq. (14) reduces to the Richardson equations in the Gamow
basis introduced in Ref. [9]. In this case the complex pairing
energies are not complex conjugate to each other; that is, E =∑

i Epi
may be complex.

D. Exact spectrum

The solution of the Richardson equations (8) with the
“boundary condition,”

limG→0+Epi
= 2εpi

, (16)

and the blocking effect, determine the ground-state and the
excited-state energies of the pairing Hamiltonian.

The 12C nucleus has three bound configurations
(Sec. III A1). The first (1) and second (2) configurations can
accommodate a single pair, while the third configuration (3)
can accommodate three pairs. The configurations (1), (2),
and (3) are related to the single-particle states 0p1/2, 1s1/2,
and 0d5/2, respectively. Then εp1 = ε0p1/2 , εp2 = ε0s1/2 , and
εp3 = εp4 = εp5 = ε0d5/2 . From the bound configurations we
can accommodate up to five pairs (22C). Because of the
inclusion of the continuum we will be able to go beyond the
nucleus 22C.
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1. Ground state

The ground-state (g.s.) configuration for a system with
Npair corresponds to fill the lowest Npair configurations by
solving the Richardson Eq. (8) with the blocking coefficient
db = 2jb + 1 because the g.s. has seniority 0 and there are
no unpaired states (all Nb = 0). For example, the g.s. of the
isotope 14C corresponds to solving one single Richardson
equation (8) with the boundary condition limG→0+Ep1 = 2εp1 .
Let us called this configuration (1)2. The g.s. of the isotope 16C
corresponds to solving two Richardson equations (8) with the
boundary conditions limG→0+Ep1 = 2εp1 and limG→0+Ep2 =
2εp2 . This is the configuration (1)2(2)2, and so on. The
ground-state energy E is given by Eq. (4) with Npair = 1, 2
and so on.

2. Excited states

We have to distinguish between excited states with seniority
0 and seniority 2.

Seniority 0 (ν = 0). The seniority 0 excited states are
found by solving as many equations (8) as pairs, like for
the g.s., but with a boundary condition other than the ground
state. For example, the first and second 0+ excited states of
14C are found as the solution of a single equation with the
boundary conditions limG→0+Ep2 = 2εp2 and limG→0+Ep3 =
2εp3 , respectively. We called such configurations (2)2 and (3)2.
As a second example, let us consider the first 0+ excited
state of 18C. It is found by solving three equations (8) with
the boundary conditions limG→0+Ep1 = 2εp1 , limG→0+Ep2 =
2εp3 , and limG→0+Ep3 = 2εp3 . We called this configuration
(1)2(3)4. The energy E of the ν = 0 excited state is like Eq. (4)
but using the excited pair energies.

Seniority 2 (ν = 2). The seniority 2 states are found by
solving Npair = (A − 12) − ν equations (8), where A is the
mass number of the isotope. This is one equation less than
the number of pairs in the ground state. The factor db in
Eq. (8) is given by db = 2jb + 1 − 2Nb, where b labels the
blocking configuration. For example, to find the ν = 2 states
in 14C one does not need to solve any equation since Npair =
(14 − 12) − 2 = 0. The ν = 2 state energy is just the sum
of the single-particle energies E = εl + εm of the unpaired
levels l and m. Let us assumed that the blocking states for the
isotope 16C are the configurations (2) and (3), that is, N1 = 0,
and N2 = N3 = 1. Then, we have to solve a single equation
with d1 = 2, d2 = 0 and d3 = 8 and the boundary condition
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Spectrum of 16C
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Carbon isotopes

Spectrum of 18C and 20C
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Conserving particle number solution in the 
complex energy plane

About the continuum Complex Energy Shell Model Many-body system Carbon isotopes Coupled-equation

Neutron single particle representation

Bound sates (Exp. energies)

0p1/2 = −4.946 MeV, 1s1/2 = −1.857 MeV, 0d5/2 = −1.093 MeV

It allows at most 10 neutrons.

Continuum sates

Complex energy states: 0d3/2 = 2.267 − i 0.416 MeV, 0f7/2 = 9.288 − i 3.040 MeV
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Splitting of the continuum single particle density

0 1 2 3 4 5

energy [MeV]

0

1

2

3

Si
ng

le
 p

ar
tic

le
 d

en
si

ty
 in

 th
e 

co
nt

in
uu

m
 [1

/M
eV

] i13/2
h9/2
f5/2
p1/2
p3/2
f7/2

g(ε) = gRes(ε) + gBckg(ε)

Resonant density

gRes(ε) =
∑

r

2jr + 1

π

dδr

dε
∼=
∑

r

2jr + 1

π

Γr/2

(ε− ϵr)2 + (Γr/2)2

About the continuum Model interaction Model solution Tin isotopes Carbon isotopes Complex energy Borromean nuclei

Splitting of the continuum single particle density

0 1 2 3 4 5

energy [MeV]

0

1

2

3

Si
ng

le
 p

ar
tic

le
 d

en
si

ty
 in

 th
e 

co
nt

in
uu

m
 [1

/M
eV

] i13/2
h9/2
f5/2
p1/2
p3/2
f7/2

g(ε) = gRes(ε) + gBckg(ε)

Resonant density

gRes(ε) =
∑

r

2jr + 1

π

dδr

dε
∼=
∑

r

2jr + 1

π

Γr/2

(ε− ϵr)2 + (Γr/2)2

Resonant density

About the continuum Model interaction Model solution Tin isotopes Carbon isotopes Complex energy Borromean nuclei

Analitic deformation

Resonant term in Richardson equation

∫ ∞

0

dε
gRes(ε)

2ε− Ek

∼=
∑

r

2jr + 1

π

[
∫ ∞

0

dε

2ε− Ek

Γr/2

(ε− ϵr )2 + (Γr/2)2

]

εr = ϵr −
Γr

2

Re(e)Im(e)

L

C

Continuum part  
in the Richardson eq.

About the continuum Model interaction Model solution Tin isotopes Carbon isotopes Complex energy Borromean nuclei

Analitic deformation

Resonant term in Richardson equation

∫ ∞

0

dε
gRes(ε)

2ε− Ek

∼=
∑

r

2jr + 1

π

[
∫ ∞

0

dε

2ε− Ek

Γr/2

(ε− ϵr )2 + (Γr/2)2

]

εr = ϵr −
Γr

2

Re(e)Im(e)

L

C

Analytic deformation
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Solutions with continuum representation

BCS equations
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(2ja + 1)
G

Ea
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dε
G g(ε)

E(ε)
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(2ja + 1)v2
a +
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dε v2(ε) g(ε)

Richardson equations
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G

2εb − Eα
−

1

2
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0

dε
G g(ε)

2ε− Eα
+2G
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1

Eβ − Eα
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Just to remember



Separation of  resonant and   
non resonant contributions

Richardson equations in the complex energy plane
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Exact solution in complex energy representation
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β≠α

1

Eβ − Eα
= 0

About the continuum Model interaction Model solution Tin isotopes Carbon isotopes Complex energy Borromean nuclei

Carbon isotopes

Pairs energies in the energy plane

1 −
G

2

∑

b

(2jb + 1)

2εb − Eα
−

G

2

∫ ∞

0

dε
g(ε)

2ε− Eα
+ 2G

∑

β≠α
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β≠α

1

Eβ − Eα
= 0

with

About the continuum Complex Energy Shell Model Many-body system Carbon isotopes Coupled-equation

Conserving N solution

Many-body Schroedinger equation

H|Ψ⟩ = E |Ψ⟩

Richardson equations

1 −
G

2

∑

a

2ja + 1

2εa − Ei
+ 2G

Npair∑

j ̸=i

1

Ej − Ei
= 0

Many-body eigenvalues

E =

Npair∑

i=1

Ei



About the continuum Complex Energy Shell Model Many-body system Carbon isotopes Coupled-equation

Carbon isotopes

Ground state energy

Going beyond the drip line

Drip line Beyond drip line
16 neutrons

About the continuum Model interaction Model solution Tin isotopes Carbon isotopes Complex energy Borromean nuclei

Moving of pair energies in 28C

Zero order (complex) energies in the continuum:
Re[2 εd3/2

] = 4.534 MeV
Re[2 εf7/2

] = 18.576 MeV
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FIG. 11. Evolution of the pair energies in the ground state
of 28C as a function of the pairing strength G from G =
2.2 MeV to G = 0.2 MeV. The arrows point in the direction of
decreasing G.

what we learn in the previous spectra, one may place some
confidence on the theoretical estimation for the levels 0+

2 , 4+
1 ,

and 3−
1 .

C. Results: Complex energy representation

The first step in the determination of the complex repre-
sentation is to find the resonant partial waves. This is done by
evaluating the outgoing solutions (complex-energy Gamow
states) of the Schrodinger equation [25,31] of the mean-field
Hamiltonian defined in Sec. III A1. Then, the half-life of
the Gamow state is compared with the characteristic time of
the system τc = 5.953 × 10−23 s (see Sec. II F). Table VII
compares the characteristic time with the half-life of the states
ε0d3/2 and ε0f7/2 . The half-life of the state 0d3/2 is around
nine times bigger than the characteristic time. The 0f7/2 state
seems to be a wide resonance, but the comparison with the
characteristic time shows that its half-life is a bit bigger
than τc.

The effect of the resonant continuum was already in-
vestigated in Ref. [9]. In order to investigate the effect
of the nonresonant continuum on the many-body correla-
tions we compare in Fig. 9 the ground-state energy of
the nucleus 22C as a function of the pairing strength for
three different model spaces: (i) bound: {0p1/2, 1s1/2, 0d5/2},
(ii) resonant: {0p1/2, 1s1/2, 0d5/2, 0d3/2, 0f7/2}, and (iii) con-
tinuum (Secc. III B). It is observed that the resonant and
nonresonant continuum states can be neglected as long as
the pairing force is not very strong [9]. As the interaction
increases, the continuum starts to be important. The curve
labeled as “continuum representation” gives the ground-state
energy when the resonant and nonresonant continuum is
included in the representation through the CSPLD. The
figure shows clearly the energy gain due to the inclusion
of the continuum. The curve labeled as “resonant represen-
tation” gives the energy when only the resonant states are
included in the representation. For very big strength, the
nonresonant continuum becomes as important as the resonant
continuum.

Let us compare the evolution of the pair energies Ei in
the bound and the resonant representation versus the pairing
strength. Figure 10 shows Ei for G from G = 1.0 MeV to
G = 0.005 MeV in the nucleus 22C. The continuum (dotted)
line corresponds to bound (resonant) representation. The
deeper pair energy E1 is little affected by the model space (one
cannot distinguish between the two curves). The other pairs
are more affected for large values of the strength. The
difference diminishes as the interaction decreases. The same
effect was observed in the ground-state energy (Fig. 9).
The pairs E2 and E3 are complex conjugate partners for
G ! 0.51 MeV and they move at the same pace as G changes.
When they become real E2 approaches the uncorrelated pair
energy 2ε2 while E3 moves faster to the uncorrelated pair
energy 2ε3. The pairs E4 and E5 remain complex conjugate
for all nonzero values of the strength.

As a last application, we calculate the evolution of pair en-
ergies in the continuum, that is, pair energies with positive real
component. To this aim let us study the nucleus 28C with eight
pairs. Figure 11 shows the evolution of the pairs for strength
from G = 2.2 MeV to G = 0.2 MeV. The bound (negative real
component) pairs E1 to E5 follow a trajectory similar to that
in 22C with the difference that the complex partners E2 − E3
and E4 − E5 are only approximately complex conjugate to
each other. They become truly complex conjugate partners
as the interaction approaches zero. On the other hand, the
pairs in the continuum show striking behavior. The typical
movement to the right is not followed by all the positive
energy pairs; that is, the continuum pairs may converge to its
uncorrelated energy from right or left as G decreases. Besides,
the pairs seem to converge to the real part of the uncorrelated
pair energy limG→0+Ei = 2Re[εi] when εi is a Gamow
state.

IV. CONCLUSION

The contribution of this paper to the exact solution of
the pairing Hamiltonian is the inclusion of the resonant and
nonresonant continuum through the continuum single-particle
level density (CSPLD). The Gamow states, which appear in the
complex energy representation, provide the main contribution
from the continuum. It is worthwhile to point out that in the
representation these states have exactly the same status as
bound states. The difference is that the states in the continuum
are not affected by blocking effects. The inclusion of the
continuum has allowed us to study the unbound isotope
24C and beyond. It was found that the continuum pairs
(pair energies with positive real components) converge to
the real part of the uncorrelated pair energy and they do
not appear in complex conjugate partners. As a consequence
the total energy may be complex. It was shown that from
the exact solution of the pairing Hamiltonian the CSPLD
can be used to investigate the effects of the resonant and
nonresonant continuum states upon the many-body pairing
correlations.
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FIG. 8. Exact low-energy spectra of 18C and 20C for seniority 0
and 2. The energies are in keV.

ground-state energy with the experimental one [29]. It is
found that the exact solutions follow the overall trend; that
is, the binding energy decreases faster at the beginning of
the chain and decelerates when it approaches the drip line.
The agreement with data worsens as the number of neutrons
increases. Even when the pairing interaction is a schematic one
and not realistic, this investigation suggests that the nucleus
24C is unbound.

2. Carbon isotopes spectrum

It is worthwhile to compare the experimental spectrum
with the exact solutions of the schematic pairing Hamiltonian
corresponding to the cases of seniority 0 and seniority 2.

14C spectrum. Table III gives the excitation spectrum (last
column) with respect to the ground-state configuration (1)2.
The seniority ν, the pair energies, and the number of pair
Npair = (A − 12) − ν (A the mass number) are also given.
Figure 6 compares the calculated levels from Table III with
those of the experiment. The quantum number of the first
excited state 1− is correctly found with 1.5 MeV less energy.
The 0+

2 and 0+
3 excited states are underestimated with respect

to the experimental ones by 0.951 MeV and 1.517 MeV
respectively. The state 3− is 1.37 MeV below the experimental
one. The splitting between the states 3− and 0+

2 is well
reproduced: 280 keV versus the experimental 175 keV but
in inverse order. We missed the first 2+ state and found a
2+ at only 129 keV from the second experimental 2+. The
near-degenerate experimental states 2+ and 4+ around 10 MeV
are well reproduced.

TABLE VII. Comparison of the half-life versus the characteristic
time (Sec. II F).

State T1/2 (s) T1/2/τc

0d3/2 5.485 × 10−22 9.21
0f7/2 7.505 × 10−23 1.26
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FIG. 9. Ground-state energy of 22C vs pairing strength G for
three different model spaces.

16C spectrum. Table IV shows the pair energies and
the excitation spectrum with respect to the ground-state
configuration (1)2(2)2. Figure 7 compares the calculated versus
the experimental spectrum of 16C. The first excited 2+ state
does not appear in our spectrum. The first 0+ excited state
is very well reproduce with a difference of only 21 keV. We
found a 2+ state at 3.274 MeV, which may correspond to
the experimental 2 state at 3.986 MeV. The first 4+ excited
state is found only 125 keV below the experimental one.
The experimental (3−) is 406 keV from the 3− calculated
state. In the exact spectrum appears a third 0+ state, which
does not appear in the experimental spectrum. Finally, the
expaerimental (4+) state is 938 keV from the 4+ calculated
one. Summing up what we found for the nucleus 16C, the first
0+, 4+, and 3− are reasonably well described by the pairing
interaction.

18C and 20C spectra. Tables V and VI show the pair
energies and the excitation spectrum with respect to the
ground-state configuration for the three- and four-pair systems
18C and 20C respectively. Figure 8 shows the calculated
exact eigenvalue of the pairing Hamiltonian for 18C and 20C.
Experimentally, only one excited state in 18C is known. It is a
(2+) state at 1620 keV from the (0+) ground state. Considering
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FIG. 10. Pair energies in the ground-state 22C vs pairing strength
G for G = 1.0 MeV to G = 0.005 MeV. The continuum line
corresponds to the bound representation while the dotted line
corresponds to the resonant representation. The arrows point in the
direction of decreasing G.
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where the index n = {nb, nc} labels the bound states nb and the box-continuum states nc; repre-
senting the negative and positive energy states respectively, with

v2
nb

= 1
2

(
1 − enb

Enb

)
, v2

nb
+ u2

nb
= 1 (8)

Enb =
√

e2
nb

+ !2 + λ2 (9)

enb = εnb − λ + (4λ2 − G)v2
nb

(10)

λ = λ1 + 2λ2(N + 1) (11)

and the same for the box-continuum states. The pairing gap reads,

! = G

2

∑

n

unvn . (12)

We are now in condition to give the equations for the continuum representation. For this 
purpose we extend the size of the spherical box to infinite. In this limit the single particle density 
for the bound states is represented by 

∑
nb

δ(ε − εnb ). On the other hand, the box-continuum 
states become more dense and are represented by the continuum single-particle level density 
g(ε) [38], with

g(ε) = 1
π

∑

lj

(2j + 1)
dδlj

dε
. (13)

The density for bound and continuum states can be written as

g̃(ε) =
∑

nb

(2jnb + 1)δ(ε − εnb )θ(−ε) + g(ε)θ(ε) . (14)

Magnitudes which in the box representation are calculated as 
∑

n fn, in the continuum repre-
sentation take on the following form:

∑

n

fn →
∑∫

f , (15)

where

∑∫
f =

∞∫

−∞
dε

[
∑

nb

(2jnb + 1)δ(ε − εnb )f (ε)θ(−ε)

+ g(ε)f (ε)θ(ε)
]

=
∑

nb

(2jnb + 1)fnb +
∞∫

0

dε g(ε)f (ε) . (16)

The symbol ∑
∫

denotes both a summation over bound states and an integration over the continuous 
part of the energy spectrum. The integral is calculated using Gauss–Legendre quadrature. Hence, 
the CSPLD contribution seems to be as the natural extension of the contribution of the discrete 
part of the representation.

The BCS equations are obtained by taking λ2 = 0 in the LN equations (5)–(12) with λ1 being 
the Fermi level. For this special case Eqs. (5) and (6) reduce to Eqs. (11) and (10) of Ref. [32]
which include the CSPLD.
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tions in a box representation. After the equation have been obtained, we make the formal limit of 
the size of the spherical box to infinite.

2.1. Hamiltonian

The many-body system is described by the constant pairing interaction

H =
∑

α

εaa
†
αaα − GP † P , (1)

where the index α = {a, mα} = {na, la, ja, mα} labels the single particle states. The mass-
dependent strength G is parametrized by the total number of particles, A = Acore + Avalence
and the relative neutron excess I = N−Z

A as [35,36]

G = χ1

A
(1 − χ2I ) , (2)

where χ2 = 0.385 MeV [35] and the constant χ1 is adjusted to reproduce the experimental gap.
The pair creation operator reads

P † =
∑

α>0

a†
αa

†
ᾱ . (3)

The summation α > 0 refers to the positive values of the projection of the total angular momen-
tum mα , while the operator a†

ᾱ = (−1)ja−mαa
†
a,−mα

is the time reverse of the a†
α operator. The 

creation a†
α and annihilation aα operators creates bound and continuum states in a spherical box 

satisfying the usual anti-commutation relationship {a†
α, aα′} = δαα′ .

Even when negative and positive energy states are normalized in the box representation, the 
assignment of the same constant matrix elements of the interaction between particles in bound 
and continuum configurations is nonphysical [37]. The influence of the non-resonant continuum 
is reduced when for the density energy is used the difference between the mean field and free 
density [38].

2.2. Lipkin–Nogami equations

The pairing interaction is diagonalized in the LN and the BCS approximations, with the LN 
Hamiltonian given by [28,29]

HLN = H − λ1N − λ2N
2 , (4)

where H is the original Hamiltonian (1) and N = ∑
α a†

αaα is the number operator. The introduc-
tion of the term λ2N

2 reduces the effect of the number fluctuation [28,29], which is significant 
in the BCS approximation when the number of particles is small.

The LN equations in the box representation are given by [31]

4
G

=
∑

n

1
En

(5)

N =
∑

n

v2
n (6)

4λ2

G
=

(∑
n u3

nvn

) (∑
n unv

3
n

)
− 2

∑
n (unvn)

4

(∑
n (unvn)

2)2 − 2
∑

n (unvn)
4

, (7)
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satisfying the usual anti-commutation relationship {a†
α, aα′} = δαα′ .

Even when negative and positive energy states are normalized in the box representation, the 
assignment of the same constant matrix elements of the interaction between particles in bound 
and continuum configurations is nonphysical [37]. The influence of the non-resonant continuum 
is reduced when for the density energy is used the difference between the mean field and free 
density [38].

2.2. Lipkin–Nogami equations

The pairing interaction is diagonalized in the LN and the BCS approximations, with the LN 
Hamiltonian given by [28,29]

HLN = H − λ1N − λ2N
2 , (4)

where H is the original Hamiltonian (1) and N = ∑
α a†

αaα is the number operator. The introduc-
tion of the term λ2N

2 reduces the effect of the number fluctuation [28,29], which is significant 
in the BCS approximation when the number of particles is small.

The LN equations in the box representation are given by [31]

4
G

=
∑

n

1
En

(5)

N =
∑

n

v2
n (6)

4λ2

G
=

(∑
n u3

nvn

) (∑
n unv

3
n

)
− 2

∑
n (unvn)

4

(∑
n (unvn)

2)2 − 2
∑

n (unvn)
4

, (7)

 …in the continuum

⟨BCS |HLN (N̂2 − ⟨BCS | N̂2 |BCS⟩) |BCS⟩ = 0
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Fig. 2. Continuum single particle level densities for a neutron in the cores 100Sn and 132Sn.

Table 3
Values of the parameter χ1 of Eq. (2) for the two major shells which 
determine the pairing strengths in the BCS and LN approximations. The 
gap parameters " were calculated using equation (23) with data from 
Refs. [47,48].

" (MeV) χBCS
1 (MeV) χLN

1 (MeV)

"(110Sn) = 1.429 [47] 18.637 18.269
"(158Sn) = 0.864 [48] 15.631 14.972

The labels εlj and εlj + εl′j ′ in this figure are used to identify  the resonances and a superposition 
of two of them, respectively  in the 101Sn nucleus. There is one to one association between the 
peaks of the CSPLD of the nuclei 101Sn and 133Sn. The overall structure of the density  of the 
133Sn remains invariant, but its peaks are shrink and displaced towards the continuum threshold. 
In Ref. [53] it was found that the high density  of single particle states in the particle continuum 
produces an increase of BCS pairing correlations using the isospin dependent strength (2). It will 
be shown that none of the magnitudes calculated using the CSPLD of Fig. 2, nor even the pairing 
gap, show any  unrealistic behavior.

3.2. Gap parameter

In this section we are going to calculate the pairing gap in the BCS and LN approximations 
and we are going to compare the results with that obtained from the five-point gap equation (23).

The parameter χ1 of Eq. (2) is different for each neutron major shells 50–82 and 82–126, 
and also for each approximate solution BCS or LN. The different χ1 were chosen to reproduce 
the gaps of the isotopes 110Sn and 158Sn. These so called reference gaps were calculate using 
equation (23). For the isotope 110Sn the experimental masses of Ref. [47] were used, while for 
the isotope 158Sn the theoretical mass of Ref. [48], were used. Table 3 gives the values of the 
different χ1 for both reference gaps. For the first major shell we choose as reference isotope the 
110Sn, because it is in the middle of the almost degenerate g7/2 and d5/2 shells. For the second 
major shell we found that the qualitative behavior shown in Fig. 3 does not change with the 
election of different reference isotopes. Then, we choose as reference the isotope 158Sn because 
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Fig. 1. (Color online.) Evolution of the single particle energies in the core 100Sn as a function of the number of the valence 
neutrons. The following labels g7/2, d5/2, s1/2, d3/2, h11/2, f7/2, p3/2, p1/2, h9/2, f5/2 identify 
each single particle state.

Table 1
Mean field parameters which define the mass depen-
dent mean field strengths.

c0 = 51.95 MeV c1 = 34.856 MeV
cso

0 = 11.30 MeV fm cso
1 = 9.075 MeV fm

r0 = 1.27 fm a = 0.7 fm

Table 2
Low-lying neutron single particle energies ε (MeV) in the 
100Sn and 132Sn cores. The energy splitting between the 
ground state and the first excited state of 101Sn was taken from 
[51], while the order was taken from [52]. The separation en-
ergy of the 101Sn and 133Sn are from Ref. [50].

Core State ε (MeV) εExp (MeV)
100Sn 0g7/2 −11.100 −11.100
100Sn 1d5/2 −10.916 −10.928

132Sn 1f7/2 −2.442 −2.402
132Sn 2p3/2 −1.395 −1.548

would be 7/2+ [51]. Reference [52] find “strong experimental evidence” that the reverse order 
actually occurs. In this paper we use g7/2 as the ground state for the 101Sn.

We are going to calculate physical magnitudes for Tin isotopes from 102 up to 176. Since this 
is a huge mass interval, we decided to consider mass-dependent single particle energies (SPE). 
These SPE, shown in Fig. 1, are calculated using the mean field parameters of Eq. (19) and (20)
given in Table 1, being 100Sn the inert core. The parameters were fixed in order to reproduce as 
well as possible the low-lying neutrons energies of the 101Sn and 133Sn shown in Table 2.

Fig. 2 shows the CSPLD g(ε) of 101Sn and 133Sn labeled as g101 and g133, respectively. These 
densities were calculated [44] with angular momentum cut-off lmax = 10 and energy cut-off 
εmax = 60 MeV. The imprint of the resonances shapes the CSPLD. Very narrow resonances ap-
pear at low energies whereas some superposition of wide resonances show up at higher energies. 

Single particle representation
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actually occurs. In this paper we use g7/2 as the ground state for the 101Sn.

We are going to calculate physical magnitudes for Tin isotopes from 102 up to 176. Since this 
is a huge mass interval, we decided to consider mass-dependent single particle energies (SPE). 
These SPE, shown in Fig. 1, are calculated using the mean field parameters of Eq. (19) and (20)
given in Table 1, being 100Sn the inert core. The parameters were fixed in order to reproduce as 
well as possible the low-lying neutrons energies of the 101Sn and 133Sn shown in Table 2.

Fig. 2 shows the CSPLD g(ε) of 101Sn and 133Sn labeled as g101 and g133, respectively. These 
densities were calculated [44] with angular momentum cut-off lmax = 10 and energy cut-off 
εmax = 60 MeV. The imprint of the resonances shapes the CSPLD. Very narrow resonances ap-
pear at low energies whereas some superposition of wide resonances show up at higher energies. 
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Fig. 3. Comparison of the calculated gap in the BCS and LN approximations with the five-point gap equation (23). For 
N < 36 we use the experimental mass from Ref. [47], while for N ≥ 36 we use theoretical mass from Ref. [48].

this election distributes evenly the deviation of the corresponding curves with respect to the 
uniform theoretical gap calculated using the five points equation.

Using the isospin pairing strength and the isospin single particle representation we calculate 
the pairing gap for the whole Tin isotope chain, from the proton drip line to the neutron drip 
line. Fig. 3 compares the five-points gap equation (23) with calculated gap in the BCS and LN 
approximations.

As a general feature, the LN solution is smoother than the BCS one in the whole chain. In the 
first major shell the LN solution shows a better agreement with the experimental gap. The BCS 
values and the LN ones are more similar in the second major shell than in the first one. Besides, 
the LN result follows better the five-point gaps in the closure of the first major shell, except at 
N = 32 where the five-point equation is not valid [45].

For the isotopes beyond A = 134 the comparison between various theoretical mass tables [22,
25,48,54] show significant differences between them. Thus, a comparison using the five points 
gap equation with theoretical mass would have little sense. In spite of this drawback, we decided 
to compare our results with the newest theoretical mass table in order to judge if our calculated 
gap in the neutron drip line side is reasonable. Our results for both, BCS and LN approximations, 
show the typical shell structure and they do not depart much from the overall behavior of the five 
points gaps.

The trend of our calculated gap fulfill the well known result for heavy nuclei [36] that the 
average gap decreases towards the neutron-rich side and increases towards the proton-rich side.

We compare our results with those of Ref. [45] for the isotopes 134Sn–164Sn. In this work the 
authors calculate the gap using the five points equation (23) from state-dependent BCS solution. 
For the comparison we used the result of their delta force model since it is smoother than the 
density-dependent delta interaction result. From Fig. 4 (upper) (of Ref. [45]) we can see that the 
BCS gap lie in the band 0.65–1.1 MeV similar to our BCS 0.58–1.16 MeV. While from Fig. 7 
(upper) (of Ref. [45]) we can see that the LN gap lie in the band 0.55–1.3 MeV similar to our LN 
0.7–1.1 MeV except in the vicinity of 164Sn.

A final observation from Fig. 3 by considering the full range of N is that the differences 
between the solutions of the BCS and LN are more pronounced far from the neutron drip line, 
i.e. the dependence of the gap on the model solution is less sensitive in the drip line region.

Binding energy
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Fig. 5. Evolution of the Fermi level in the BCS and LN approximations as a function of the number of the valence 
neutrons N in the core 100Sn.

Fig. 6. Discrete and continuum particle number as defined in Eq. (24) in the LN approximation as a function of the number 
of the valence neutrons N . At this scale, the BCS solutions (not shown in the figure) would be almost indistinguishable 
of the LN one.

3.5. Binding energy and one- and two-neutron separation energies

In this section we calculate the binding energy per nucleon, the two-neutron separation en-
ergy and the one-neutron separation energy in the non-blocking approximation. The results are 
compared with that of Refs. [37,56] and with experimental data [57].

3.5.1. Binding energy:
The binding energy per nucleon in the BCS and LN approximations are calculated from

B

A
= B(100Sn) − EBCS/LN(N)

50 + N
, (25)

where the experimental value B(100Sn)/100 = 8 .253 MeV [57] was used for the core binding 
energy, and

EBCS/LN(N) =
∑∫

n

v2
n

(
εn − G

2
v2
n

)
− "2

G
− λ2

∑∫

n

2u2
n v2

n . (26)
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ergy and the one-neutron separation energy in the non-blocking approximation. The results are 
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Fig. 7. Numerical calculation of the binding energy per particle for the Sn isotopes from the BCS, LN and HF+BCS 
approximations. The numerical result of HF-BCS approximation is from Ref. [56]. The experimental data (Exp) are 
from the Atomic Mass Evaluation [57].

Fig. 7 shows the calculated binding energy per particle versus the number of valence neutrons. 
Both BCS and LN approximations give similar results for all isotopes. The maximum binding en-
ergy per nucleon occurs at N ∼ 14, 16 and coincides with the experimental maximum. At N = 32
the figure shows a break in the experimental values. From here on, the numerical solutions have 
a linear behavior which follows the extrapolated slope of the experimental data. The insert in 
Fig. 7 shows the binding energy per nucleon in the range 2 ≤ N ≤ 36. The numerical solutions 
string along with the experimental values for N ≤ 24, while for 28 ≤ N ≤ 36 our results depart 
from the experimental ones. The comparison with the result from the HF+BCS approximation of 
Ref. [56] shows that our precision is similar to this one up to N = 24. Beyond this nucleus the 
HF+BCS perfectly agrees with experiment. The CSPLD gives and alternative representation to 
include the continuum single particle configurations to that of the spherical box [37]. The inclu-
sion of the continuum allows to calculate magnitudes in nuclei with extreme neutron-to-proton 
ratios and, in this way gives some insight about the behavior of these exotic nuclei beyond the 
present experimental data.

3.5.2. Two-neutron separation energy
The two neutron separation energy is calculated from

S2n(N) = −[EBCS/LN(N) − EBCS/LN(N − 2)] . (27)

Fig. 8 shows the calculated two neutron separation energies and the experimental values [57]
as a function of the atomic mass A = 100 + N . We see a good agreement with experimental 
data up to N = 18. From here on, both BCS and LN calculations depart from the experimental 
data reaching a maximum of around 2 MeV at N = 32. Besides this awkward behavior at the 
closure of the first major shell, the matching with experimental data for the nuclei 134Sn to 138Sn 
is excellent. As stated before, the inclusion of the continuum would allow us to guess what to 
expect for observables close to the drip line.

In Ref. [53] the continuum is included via harmonic oscillator (HO) states. Using BCS ap-
proximation, the authors get the two-neutron drip line at the nucleus 162Sn considering 12 HO 
shells in the single particle representation and at 166Sn using 40 HO shells. The more elaborated 
Hartree–Fock–Bogoliubov approximation gives that the S2n lies between 168Sn–176Sn, depend-
ing on the interaction used. Our calculation shows that the two-neutron drip line occurs at 164Sn.
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VI. NI ISOTOPES

The system is the Niquel isotopes generates by puting valence neutron sates outside the 56Ni core. The experimental
energy of the single particle valence states are:

TABLE II: Single neutron states in 56Ni.

state energy[MeV]
2p3/2 -10.247
1f5/2 -9.478
2p1/2 -9.134
1g9/2 -5.703
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FIG. 6: Pairing gap parameter versus g in 64Ni.
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FIG. 7: Binding energy respect to the non-interacting fermi sea versus g in 64Ni.

The Lipkin-Nogami gives the exact result!!!. The same agrement is obtained for other isotopes.
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I. INTRODUCTION

HBCS = H − λN (1)

HLN = H − λ1 N − λ2 N
2 (2)

64
N =56

N + 8n (3)

Bound representation

(Theoretical mass)
(Experimental mass)

(Phys. At. Nucl. 76, 828 (2013))
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Fig. 8. Two neutron separation energy for the Sn isotopes. The experimental data (Exp) are from the Atomic Mass 
Evaluation [57].

Fig. 9. Neutron separation energies as a function of the atomic mass for the Tin isotopes for BCS and LN approximations. 
The experimental data (Exp) are from the Atomic Mass Evaluation [57].

From Ref. [58] we know that the two-neutron separation energy behaves approximately as 
S2n(N) ≈ −2λ(N − 1). In the non-blocking approximation we take λ(N − 1) as the Fermi level 
of the even N nucleus. Then, the Fermi level should change sign at the same nucleus as the two-
neutron separation energy, which is approximately verified as can be seen from Figs. 5 and 8.

3.5.3. One-neutron separation energy
In the non-blocking approximation the single neutron separation energy is given approxi-

mately by [58]

Sn(N − 1) = −λ(N) + 1
2

[
λ(N) − λ(N − 2)

2

]
− Emin(N) , (28)

where λ was calculated in section 3.4 and Emin is the smallest of the quasiparticle energies as 
calculated in section 3.3. Both of this quantities are calculated for even-N isotopes. The approx-
imation (28) can not be applied for the isotopes 101Sn and 133Sn [58].

Fig. 9 compares the separation energy calculated in the BCS and LN approximations with that 
of experimental data from Ref. [57]. The experimental separation energy for the isotopes of the 
first major shell decreases monotonically up to A = 119 and then the slope decreases slightly. 
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