Methods to deal with an effective pairing in the continuum: real and complex energy representations

Rodolfo M. Id Betan

Physics Institute of Rosario (CONICET), Argentina.
In collaboration with:
Carlos E. Repetto (CONICET, Argentina)

FRIB-Theory Alliance workshop
From bound states to the continuum:
Connecting bound state calculations with scattering and reaction theory"

11-22 June 2018

Goal:

Study the many-body properties in open shell nuclei with Fermi level close to the continuum threshold or embedded in it Outline

- About representation
- Single particle representation
- Single particle level density
- Single particle complex energy
- Model interaction: pairing
- Model solutions
- Richardson (Exact)
- Bardeen-Cooper-Schrieffer (BCS)
- Lipkin-Nogami (LN)
- Applications: open shell nuclei (constant pairing)

ABOUT RESONANCES

- Signature in box representation
- Signature in real energy representation
- Signature in complex energy representation
- Resonances as basis states

Signature of resonances in the box representation

$$
\epsilon=9.019-\mathrm{i} 0.126 \mathrm{MeV}
$$

$\epsilon=1.249-\mathrm{i} 2.030 \mathrm{MeV}$

Signature of resonances in the real energy representation

Signature of resonances in the complex energy representation

$$
\varphi_{l j}(k, r)=\frac{i}{2} k^{-(l+1)}\left[f_{l j}(-k) f_{l j}(k, r)-(-)^{l} f_{l j}(k) f_{l j}(-k, r)\right] \quad f_{l j}(\pm k, r \rightarrow \infty) \longrightarrow e^{\mp i k r} e^{\frac{\pi}{2} l}
$$

$$
S_{l j}(k)=\frac{f_{l j}(k)}{f_{l j}(-k)} \quad S_{l}^{R}(E)=e^{i 2 \delta_{l}^{R}(E)}=1-\frac{i \Gamma}{E-\left(E_{R}-i \Gamma / 2\right)}
$$

Continuum states as basis expansion

T. Berggren, Nuclear Physics A 109, 265 (1968)

$$
\delta\left(r-r^{\prime}\right)=\sum_{n=n_{b}, n_{a}, n_{d}} u_{n}(r) u_{n}\left(r^{\prime}\right)+\int_{L} d k u(k, r) u\left(k, r^{\prime}\right)
$$

$$
f(r)=\int f\left(r^{\prime}\right) \delta\left(r-r^{\prime}\right) d r^{\prime}
$$

$$
f(r)=\sum_{n=n_{b}, n_{a}, n_{d}} c_{n} u_{n}(r)+\int_{L} c(k) u(k, r) d k
$$

MODEL INTERACTION For the
 Many-body calculation in open shells

- Single particle basis
- Model interaction: pairing
- Correlations between continuum states

How to Introduce the Single Particle Basis in Many-Body Calculations

$$
\begin{gathered}
H=\sum_{i=1}^{A}\left[-\frac{\hbar^{2}}{2 m_{i}}\right] \nabla_{\boldsymbol{r}_{i}}^{2}+\sum_{i<j=1}^{A} v\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right) \\
H=\left\{\sum_{i=1}^{A}\left[-\frac{\hbar^{2}}{2 m_{i}}\right] \nabla_{\boldsymbol{r}_{i}}^{2}+\sum_{i=1}^{A} v\left(\boldsymbol{r}_{i}\right)\right\}+\left\{\sum_{i<j=1}^{A} v\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right)-\sum_{i=1}^{A} v\left(\boldsymbol{r}_{i}\right)\right\} \\
H=\sum_{i=1}^{A} h\left(\boldsymbol{r}_{i}\right)+V
\end{gathered} \begin{aligned}
& h(\bar{r})=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+v(r)
\end{aligned}
$$

$h(\boldsymbol{r}) \phi_{\alpha}(\boldsymbol{r})=\varepsilon_{\alpha} \phi_{\alpha}(\boldsymbol{r}) \quad \delta\left(r-r^{\prime}\right)=\sum_{n_{b}, n_{v}, n_{r}} u_{n l j}(r) u_{n l j}\left(r^{\prime}\right)+\int_{L} d k u_{l j}(k, r) u_{l j}\left(k, r^{\prime}\right)$
Computer Code: ANTI
L. Gr. Ixaru, M. Rizea, T. Vertse, Comp. Phys. Comm. 85, 217 (1995)

Model Interaction

$$
\begin{aligned}
& H=\sum_{a m_{a}} \varepsilon_{a} C_{a m_{a}}^{\dagger} c_{a m_{a}}+\sum_{J M} \sum_{b \leq a} \sum_{d \leq c}\langle a b, J M| V|c d, J M\rangle A_{J M}^{\dagger}(a b) A_{J M}(c d) \\
& \langle c d, J M| V|a b, J M\rangle=-\frac{G}{2} \sqrt{\left(2 j_{c}+1\right)\left(2 j_{a}+1\right)} \delta_{J o} \delta_{c d} \delta_{a b}
\end{aligned}
$$

Pairing Hamiltonian

$$
\begin{gathered}
H=\sum_{a m_{\mathrm{a}}} \varepsilon_{a} C_{a m_{a}} c_{a m_{\mathrm{a}}}-G P^{\dagger} P \\
P^{\dagger}=\sum_{a m_{\mathrm{a}}>0} c_{a a_{a}}^{\dagger} C_{a m_{a}}^{\dagger}
\end{gathered}
$$

About the limitations of the pairing interaction

Missing correlations $\langle c d, J M| V|a b, J M\rangle$

Classification of the Two Body Correlations

- Bound-Bound
- Bound-Continuum
- Continuum-Continuum

$$
\langle c d, J M| V|a b, J M\rangle
$$

Classification of

Continuum-Continuum Correlations

CONTINUUM

- Resonant-Resonant
$\langle c d, J M| V|a b, J M\rangle \quad$ - Resonant-Non Resonant
- Non Resonant-Non Resonant

CONSERVING PARTICLE NUMBER MODEL SOLUTION

Richardson

- Real energy representation
- Complex energy representation

Conserving particle number solution:
 Richardson

Richardson ansatz

$$
\begin{gathered}
|\Psi\rangle=\prod_{i=1}^{N_{\text {oair }}}\left(\sum_{a} \frac{P_{a}^{\dagger}}{2 \varepsilon_{a}-E_{i}}\right)|0\rangle \\
N|\Psi\rangle=\left(2 N_{\text {pair }}\right)|\Psi\rangle
\end{gathered}
$$

Many-body eigenvalue
$H|\Psi\rangle=E|\Psi\rangle$

$$
E=\sum_{i=1}^{N_{\text {pair }}} E_{i}
$$

Pair creation operator

$$
P_{a}^{\dagger}=\sum_{m_{a}>0} C_{a m_{a}}^{\dagger} C_{a \bar{m}_{a}}^{\dagger}
$$

Richardson equations

$$
1-\frac{G}{2} \sum_{a} \frac{2 j_{a}+1}{2 \varepsilon_{a}-E_{i}}+2 G \sum_{j \neq i}^{N_{\text {par }}} \frac{1}{E_{j}-E_{i}}=0
$$

Conserving particle number solution: Continuum spectrum

Single Particle Level Density Ansatz

$h(r) u(k, r)=\epsilon u(k, r)$

Conserving particle number solution: Continuum spectrum

$$
\sum_{n} f_{n} \rightarrow \mathcal{Y} f=\sum_{n_{b}}\left(2 j_{n_{b}}+1\right) f_{n_{b}}+\int_{0}^{\infty} d \varepsilon g(\varepsilon) f(\varepsilon)
$$

Richardson equations

Effective pairing
in the continuum
$1-\frac{1}{2} \sum_{b}\left(2 j_{b}+1\right) \frac{G}{2 \varepsilon_{b}-E_{\alpha}}-\frac{1}{2} \int_{0}^{\infty} d \varepsilon \frac{G g(\varepsilon)}{2 \varepsilon-E_{\alpha}}+2 G \sum_{\beta \neq \alpha} \frac{1}{E_{\beta}-E_{\alpha}}=0$
Compare with...
$1-\frac{G}{2} \sum_{a} \frac{2 j_{a}+1}{2 \varepsilon_{a}-E_{i}}+2 G \sum_{j \neq i}^{N_{\text {part }}} \frac{1}{E_{j}-E_{i}}=0$

$$
g(\varepsilon)=\frac{1}{\pi} \sum_{l j}(2 j+1) \frac{d \delta_{l j}}{d \varepsilon}
$$

The level density contains the resonant and non resonant continuum

Conserving particle number solution Application: Carbon isotopes

Neutron level density in ${ }^{12} \mathrm{C}$

bound states: $0 \mathrm{p}_{1 / 2}, 1 \mathrm{~s}_{1 / 2}, 0 \mathrm{~d}_{5 / 2}$
$G=\frac{10.9}{A} \mathrm{MeV}$

Spectrum of ${ }^{14} \mathrm{C}$

Conserving particle number solution Application: Carbon isotopes

Spectrum of ${ }^{16} \mathrm{C}$

10038	$2^{+} .4^{+}$	(3) ${ }^{(2)}$	$10390{ }_{9980}$
		4^{+}(4)	9420
			8920
7497	0^{+}	3	7740
5703	2,3	$\left(2^{+}, 3\right)$	6109
4017	$2^{+}, 4^{+}$	$3^{(+)} 4^{+}$	4142.4088
3274	$2^{+}, 3^{+}$	$2{ }_{(0+)}$	30273986
3048	0^{+}		
		$2+$	1766
0.0	0^{+}	0^{+}	0.0
Calculated		Exp	nental

Conserving particle number solution in the complex energy plane

$$
g(\varepsilon)=g_{\text {Res }}(\varepsilon)+g_{\text {Bckg }}(\varepsilon)
$$

> Resonant density
> $g_{\text {Res }}(\varepsilon)=\sum_{r} \frac{2 j_{r}+1}{\pi} \frac{d \delta_{r}}{d \varepsilon} \cong \sum_{r} \frac{2 j_{r}+1}{\pi} \frac{\Gamma_{r} / 2}{\left(\varepsilon-\epsilon_{r}\right)^{2}+\left(\Gamma_{r} / 2\right)^{2}}$
> Continuum part in the Richardson eq.
> $\int_{0}^{\infty} d \varepsilon \frac{g_{\text {Res }}(\varepsilon)}{2 \varepsilon-E_{k}} \cong \sum_{r} \frac{2 j_{r}+1}{\pi}\left[\int_{0}^{\infty} \frac{d \varepsilon}{2 \varepsilon-E_{\kappa}\left(\varepsilon-\epsilon_{r}\right)^{2}+\left(\Gamma_{r} / 2\right)^{2}}\right]$

Analytic deformation

Just to remember
$1-\frac{1}{2} \sum_{b}^{(2 j b+1)} \frac{G}{2 \varepsilon_{b}-E_{\alpha}}-\frac{1}{2} \int_{0}^{\infty} d \varepsilon \frac{G g(\varepsilon)}{2 \varepsilon-E_{\alpha}}+2 G \sum_{\beta \neq \alpha} \frac{1}{E_{\beta}-E_{\alpha}}=0$

Separation of resonant and non resonant contributions

Richardson equations in the complex energy plane

$$
\begin{aligned}
& 1-\frac{G}{2} \sum_{b} \frac{2 j_{b}+1}{2 \varepsilon_{b}-E_{k}}-\frac{G}{2} \sum_{r} \frac{2 j_{r}+1}{2 \varepsilon_{r}-E_{k}} \\
& \begin{array}{l}
\text { with } \\
\varepsilon_{r}=\epsilon_{r}-\frac{\Gamma_{r}}{2}
\end{array} \\
& -\frac{G}{2} \int_{0}^{\infty} g_{C x B c k g}(\varepsilon) \frac{d \varepsilon}{2 \varepsilon-i E_{k}}-\frac{G}{2} \int_{0}^{\infty} g_{B c k g}(\varepsilon) \frac{d \varepsilon}{2 \varepsilon-E_{k}} \\
& +2 G \sum_{l \neq k} \frac{1}{E_{I}-E_{k}}=0 \\
& E=\sum_{i=1}^{N_{\text {pair }}} E_{i}
\end{aligned}
$$

Before the extension into the complex plane

$$
\begin{aligned}
& 1-\frac{G}{2} \sum_{b} \frac{\left(2 j_{b}+1\right)}{2 \varepsilon_{b}-E_{\alpha}}- \\
& -\frac{G}{2} \int_{0}^{\infty} d \varepsilon \frac{g(\varepsilon)}{2 \varepsilon-E_{\alpha}} \\
& +2 G \sum_{\beta \neq \alpha} \frac{1}{E_{\beta}-E_{\alpha}}=0
\end{aligned}
$$

Going beyond the drip line

Drip line

$$
E=\sum_{i=1}^{N_{\text {pair }}} E_{i}
$$

Beyond drip line ${ }^{28} \mathrm{C}$
16 neutrons

Assessment of the importance of the resonant and non resonant continuum

NON CONSERVING PARTICLE MODEL SOLUTION

Bardeen-Cooper-Schrieffer (BCS) and

Lipkin-Nogami (LN)

- Real energy representation

Non conserving particle number solutions: BCS and LN

BCS and LN ansatz

$$
|B C S\rangle=\prod_{a, m_{a}>0}\left[u_{a}+(-1)^{a-m_{a}} v_{a} c_{a m_{a}}^{\dagger} c_{a-m_{a}}^{\dagger}\right]|0\rangle
$$

BCS Hamiltonian
$H_{B C S}=H-\lambda N$

LN Hamiltonian

$$
H_{L N}=H-\lambda_{1} N-\lambda_{2} N^{2}
$$

BCS and LN equations...

$$
\begin{aligned}
\frac{4}{G} & =\sum_{n} \frac{1}{E_{n}} \quad N=\sum_{n} v_{n}^{2} \\
\frac{4 \lambda_{2}}{G} & =\frac{\left(\sum_{n} u_{n}^{3} v_{n}\right)\left(\sum_{n} u_{n} v_{n}^{3}\right)-2 \sum_{n}\left(u_{n} v_{n}\right)^{4}}{\left(\sum_{n}\left(u_{n} v_{n}\right)^{2}\right)^{2}-2 \sum_{n}\left(u_{n} v_{n}\right)^{4}}
\end{aligned}
$$

$\langle B C S| H_{L N}\left(\hat{N}^{2}-\langle B C S| \hat{N}^{2}|B C S\rangle\right)|B C S\rangle=0$
...in the continuum

$$
\begin{aligned}
& \sum_{n} f_{n} \rightarrow \mathcal{f} f \\
& =\sum_{n_{b}}\left(2 j_{n_{b}}+1\right) f_{n_{b}}+\int_{0}^{\infty} d \varepsilon g(\varepsilon) f(\varepsilon)
\end{aligned}
$$

Non conserving particle number solutions BCS and LN:

Aplication in real representation

Tin isotopes from $\mathbf{A}=102$ to $\mathbf{A}=176$

Single particle representation

Fig. 1. (Color online.) Evolution of the single particle energies in the core ${ }^{100} \mathrm{Sn}$ as a function of the number of the valence neutrons. The following labels $\circ g_{7 / 2}, \diamond d_{5 / 2}, \square s_{1 / 2}, \triangle d_{3 / 2}, \triangleleft h_{11 / 2}, \nabla f_{7 / 2}, \triangleright p_{3 / 2},+p_{1 / 2}, \star h_{9 / 2}$, A $f_{5 / 2}$ identify each single particle state.

BCS and LN in real representation

Tin isotopes from $\mathbf{A}=102$ to $\mathbf{A}=176$

Gap

Binding energy

$$
E_{\mathrm{BCS} / \mathrm{LN}}(N)={\underset{n}{n}}^{v_{n}^{2}}\left(\varepsilon_{n}-\frac{G}{2} v_{n}^{2}\right)-\frac{\Delta^{2}}{G}-\lambda_{2}{\underset{n}{n}} 2 u_{n}^{2} v_{n}^{2}
$$

BCS and LN in real representation

Tin isotopes
 From proton drip line to neutron drip line

Drip line

Two-neutron separation energy

Discussion and Outlook

- PRO: fast/manageable dimensions
- CONS: losses of correlations
- Improvements (pairing):
- Separable interaction
- Effective interaction
- Realistic interaction

Workflow for practitioners

Many-body Hamiltonian

Mean-field approximation

Single particle (s.p.) Hamiltonian

Discrete and continuum eigenfunctions (code ANTI)

Phase shift and s.p. densities

THANK YOU

FOR YOUR ATTENTION

