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Some comments on experimental data...

I Experiments measure:
cross sections
energy spectra
energies of bound states
lifetimes
. . .

I Derived quantities:
widths and energies of unbound states
phase shifts and ANCs
scattering lengths
. . .

I Various assumptions and nuclear theory are needed for the
latter category.

I Sometimes it is useful to boil things down to a single number.
I The continuum is complicated, but we need a simple story.



Phenomenology

I Provide “best” estimates and uncertainties for applications
(astrophysics, reactors, other nuclear theory,. . . )

I Can take input from both theory and experiment

I Provides bridges between theory, experiment, and applications



Phenomenological R-Matrix

I Exact implementation of quantum-mechanical symmetries
and conservation laws (Unitarity)

I Treats long-ranged Coulomb potential explicitly
I Wavefunctions are expanded in terms of unknown basis

functions
I Energy eigenvalues and the matrix elements of basis functions

are adjustable parameters, which are typically optimized via
χ2 minimization (Bayesian methods also used).

I A wide range of physical observables can be fitted (e.g. cross
sections, Ex, Γx,. . . )

I The fit can then be used to determine unmeasured quantities.
I Major Approximations: truncation (levels / channels) –

but does not destroy unitarity



Phenomenological R-Matrix, Continued

I Inclusion of “background levels” is important.
I The channel radii are taken & nuclear surface (conclusions

should be independent of radius)
I Equivalent to EFT in the zero-radius limit (Hale, Brown,

Paris, Phys. Rev. C 89, 014623 (2014), for nuclear channels.



12C(α, γ)16O: Important Energy Levels

Physics: Subthreshold resonances and interference

Note: Combination of
experiment and theory
required to obtain
S(300). Subthreshold
resonances along with
their interference must
be considered in the
theory.
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Global R-Matrix Analysis
Reviews of Modern Physics 89, 035007 (2017)
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I James deBoer, R.E. Azuma, A. Best, C.R. Brune, C. E. Fields, J. Görres, S. Jones, M.
Pignatari, D. Sayre, K. Smith, F. Timmes, E. Uberseder, M. Wiescher

I Over 15,000 data points fitted. 3 nuclear channels, 5 γ channels.
I Bound state information (Ex, Γγ , ANCs) also fitted or input.



Reaction Rate
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R-Matrix Boundary Conditions

ρ = kr O = G` + iF` L = ρO
′

O |r=a

I ρ
u′

u
|r=a = B real, energy-independent → real Eλ, γλ

Wigner, Lane, Thomas,. . .

I ρ
u′

u
|r=a = Re(L) |r=a real, energy-dependent → real Eλ, γλ

Helps with interpretation of parameters, equivalent to above

I ρ
u′

u
|r=a = L |r=a complex, energy-dependent →
complex Eλ, γλ

Siegert (1939), Gamow / Siegert states, not a practical basis
for fitting data

In all of the above, Eλ and γλ also define poles and residues of a
matrix (R, RS , or S).



S-Matrix

I = G` − iF`
A = “energy level matrix” (Eλ, γλ, Coulomb functions)
Sλc = Re[Lc(Eλ)]

I Sc′c = 2iρ
1/2
c′ O

−1
c′ γ

T
c′Aγcρ

1/2
c O−1c + Ic′O

−1
c

I poles: Egi = Ẽigi , where

(E)λµ = (A−1)λµ + Ẽδλµ

= Eλδλµ −
∑
c

γλcγµcLc(Ẽ)

+
∑
c

{
γ2λcSλc λ = µ

γλcγµc
Sλc(Ẽ−Eµ)−Sµc(Ẽ−Eλ)

Eλ−Eµ λ 6= µ



Finding S-Matrix Poles
I E is complex, symmetric, and energy-dependent.
I Number of of levels (dimension of E) typically < 10.
I Choose k = kR + ikI to be to the right of the line ikr = −kI .
I Use Rayleigh Quotient iteration, starting from an R-matrix

pole:

(gi)n+1 = [(Ei)n − (Ẽi)nI]−1(gi)n

(Ẽi)n+1 = (Ẽi)n +
(gi)

T
n+1[(Ei)n − (Ẽi)n](gi)n+1

(gi)
T
n+1[1− (dEidE )n](gi)n+1

Factor in denominator is important!
I then γ̃ic ≡ gTi γc and near the pole at Ẽi

Sc′c ≈ 2i
ρ
1/2
c′ O

−1
c′ γ̃ic′ γ̃icO

−1
c ρ

1/2
c

(Ẽi − E)[gTg +
∑

c γ̃
2
ic
dLc
dE (Ẽi)]

gTg can be zero (?)



Some comments on the normalization factor

N−1 = gTg +
∑

c γ̃
2
ic
dLc
dE (Ẽi)

I Changes the normalization volume from in side the channel
radii to all space.

I dLc
dE “=” 2µa

~2O2(a)

∫∞
a O2(r) dr

I “=” → contour deformation or convergence factor required. . .

I This can be conveniently calculated via a continued fraction
method.



Example: 12C + α scattering

I Specifically, 170 ` = 1 phase shift data points from Tishhauser
et al. (2009).

I 3-level R-matrix fit: subthreshold resonance (-0.045 MeV),
≈ 2.4-MeV resonance, and a background pole.

I Only include 12C + α channel.
I Fix ANC of subthreshold state to value determined using

using transfer reactions.
I → 4 free parameters: Eλ and γλ for λ=2,3.
I Consider channel radii between 4.5 and 8.0 fm.
I Extract Γ using a Breit-Wigner on the real axis:

Γλc =
2γ2λcPλc

1 +
∑

c γ
2
λc
dSc
dE (Eλ)

Pλc = Im[Lc(Eλ)]

I Extract S-matrix pole parameters.



Fit to Phase Shift Data
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Fitting Cross Section Data is Better
But...

I Then you must model all partial waves.
I And average over energy of the measurement.
I This WAS done for the analysis in the RMP article.



χ2 Versus Channel Radius
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S-Matrix Pole Parameters
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Some Comments on Alternatives

I Alternatives include:
– Effective Range Theory
– K-Matrix

I The approaches do not have a radius parameter.
I But there are downsides:

– Effective Range Theory is not a natural tool
for resonances.

– The functional form of the “background” is unclear.
I The fact that R-matrix parameters correspond to a basis is an

advantage.
I There are several computer codes available for R-matrix

analysis, e.g. AZURE2 (http:azure.nd.edu)
I There have been a number of simple Effective Range style

analyses for 12C + α recently:
– Ramı́rez Suárez and Sparenberg, Phys. Rev. C 96, 034601 (2017).
– Ando, Phys. Rev C 97, 014604 (2018).
– Blokhintsev et al., Phys. Rev C 97, 024602 (2018).

http:azure.nd.edu


R-matrix can handle quite complicated problems
ENDF/B-VII: G.M. Hale and M.W. Paris (LANL) R-Matrix Evaluation
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Future Opportunities

I 3He + α, 7Be + p, 12C + α

I 18Ne (17F + p), 19Ne (15O + α),. . .

I p+ proton-rich beams (e.g. 11C + p)

I α optical potential [e.g. 34Ar(α, p)]

I transfer reactions, including charge-exchange

I (> 2)-particle final states, e.g. 26O, di-neutron, tetra-neutron



Thank you for your attention.


