Correlated Reference States and Effective Hamiltonians in the IMSRG Framework
(Multi-Reference) In-Medium Similarity Renormalization Group

Transforming the Hamiltonian

- reference state: single Slater determinant

excitations relative to reference state: normal-ordering
Decoupling in A-Body Space

\[\langle i | H | j \rangle \]

aim: decouple reference state \(|\Phi\rangle \) from excitations

H. Hergert - FRIB Theory Alliance Workshop: “From Bound States to the Continuum”, Jun 12, 2018
Flow Equation

\[\frac{d}{ds} H(s) = \left[\eta(s), H(s) \right] \]

Operators truncated at **two-body level** - matrix is never constructed explicitly!
Decoupling

N3LO, $\lambda = 2.0$ fm$^{-1}$, $e_{\text{Max}} = 8$

- non-perturbative resummation of MBPT series (correlations)
- off-diagonal couplings are rapidly driven to zero

H. Hergert - FRIB Theory Alliance Workshop: “From Bound States to the Continuum”, Jun 12, 2018
Decoupling

- absorb correlations into **RG-improved Hamiltonian**

\[U(s)H U^\dagger(s)U(s) \left| \psi_n \right\rangle = E_n U(s) \left| \psi_n \right\rangle \]

- reference state is ansatz for transformed, **less correlated eigenstate**:

\[U(s) \left| \psi_n \right\rangle \overset{!}{=} \left| \Phi \right\rangle \]

H. Hergert - FRIB Theory Alliance Workshop: “From Bound States to the Continuum”, Jun 12, 2018
Correlated Reference States

Collective (aka static) correlations, e.g. due to intrinsic deformation:

"standard" IMSRG:
build correlations on top of Slater determinant (= independent-particle state)

IMSRG(2) IMSRG(3) IMSRG(4) IMSRG(5)
Correlated Reference States

MR-IMSRG: build correlations on top of already correlated state (e.g., from method that describes static correlation)

use generalized normal ordering with $2B,\ldots$ densities
MR-IMSRG References States

- Slater determinants (uncorrelated)

- number-projected Hartree-Fock Bogoliubov vacua

- Generator Coordinate Method (with projections)

- small-scale No-Core Shell Model

- clustered states, Density Matrix Renormalization Group, tensor networks etc.
MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.
Titanium Isotopes

First, we see GGF calculations. Each isotopic chain was shifted by a multiple of to overpredict the

FIG. 4. The mass landscape of titanium isotopes is shown from three perspectives: (a) absolute masses (shown in binding energy format), (b) its first

update values with TITAN data.

Both theoretical calculations (lines) and experimental values (points) are shown. The no-shell hypothesis on

...
N=32 sub-shell closure too pronounced: combined effect of method & interaction!
Calcium Isotopes

- Garcia–Ruiz et al., Nat. Phys. 12, 594
- NN+3N(400), $\lambda=2.24$ fm$^{-1}$
- NN+3N(400), $\lambda=1.88$ fm$^{-1}$
- NNLO$_{\text{sat}}$

\[
R_{ch}[\text{fm}] = \lambda A^{1/3}
\]
Calcium Isotopes

\[A_{Ca} \]

\[R_{ch}[fm] \]

- Garcia–Ruiz et al., Nat. Phys. 12, 594
- \(NNLO_{sat} \)

parabola explained by sd-pf configuration mixing in Shell model: static correlation

H. Hergert - FRIB Theory Alliance Workshop: “From Bound States to the Continuum”, Jun 12, 2018
Excited States

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.
- use IMSRG Hamiltonian as input for Equation-of-Motion approach
- all nucleons active
- currently include up to $2p2h$ excitation operators
Valence Space Decoupling

construct **non-empirical interactions**
(and other operators) for use in the nuclear **configuration interaction** method
Valence Space Decoupling

\[\langle i | H | j \rangle \]

\[\langle i | H(\infty) | j \rangle \]

change definition of off-diagonal Hamiltonian:

\[\left\{ H^{od} \right\} = \{ f_{h}^{'}, f_{pp}', f_{p}, f_{v}, \Gamma_{hh}', \Gamma_{hv}', \Gamma_{pp}', \Gamma_{vv}' \} \& \text{H.c.} \]
Ground-State Energies

- (initial) normal ordering and IMSRG decoupling in the target nucleus
- consistent with (MR-)IMSRG ground state energies (and CC, SCGF, …) for the same Hamiltonian
Excitation Spectra

sd-shell spectra agree very well with experiment and USDA/B...

... for NN+3N(400) with “wrong” $c_D = -0.2$.

S. K. Bogner et al., PRL 113, 142501 (2014), S. R. Stroberg et al., PRC 93, 051301(R) (2016)
Transitions

N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324;

Converged VS-/EOM-IMSRG results consistent with NCSM

H. Hergert - FRIB Theory Alliance Workshop: “From Bound States to the Continuum”, Jun 12, 2018
• non-zero \(B(E2) \) from Shell model: **VS-IMSRG induces effective neutron charge**

• **\(B(E2) \) much too small**: effect of intermediate 3p3h, …
 states that are truncated in IMSRG evolution
Transitions

N. M. Parzuchowski, S. R. Stroberg et al., PRC 96, 034324

- **B(E2) much too small**: effect of intermediate 3p3h, … states that are truncated in IMSRG evolution
Capturing Static Correlations: IMSRG+GCM

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- **Generator Coordinate Method (with projections)**
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.
Example: 20Ne

- reference: particle-number & angular-momentum projected HFB

- range of deformed reference states flow to the 20Ne ground state

- deviation from Shell model result: correlations beyond MR-IMSRG(2)
• **approximate MR-IMSRG(3):** induced 3B terms recover bulk of missing correlation energy

• **size will be reference-state dependent**
IMSRG+GCM for 20Ne

- Rotational band spread out

- $B(E2)$ significantly boosted, but still underestimated (2B part of effective E2 not included yet, spectrum spread out)
Merging IMSRG and NCSM

E. Gebrerufael, K. Vobig, HH and R. Roth, *in preparation*

MR-IMSRG References States

- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- clustered states, Density Matrix Renormalization Group, tensor networks etc.
E. Gebrerufael, K. Vobig, HH and R. Roth, PRL 118, 152503 (2017)

NCSM
- define reference state

IMSRG
- evolve operators
 - evolve Hamiltonian and observables with MR-IMSRG
 - decoupling in A-body space

NCSM
- diagonalization in small model space
- use eigenstate as reference
- extract observables
 - diagonalize evolved Hamiltonian
 - calculate eigenstates, observables
$s = 0.00 \text{ MeV}^{-1}$

\[N_{\text{max}} = 0\]
\[N_{\text{max}} = 2\]
\[N_{\text{max}} = 4\]

Slater determinants

Slater determinants

figures by E. Gebrerufael
^{12}C: Hamiltonian Matrix Evolution

$E(s) \quad s = 1.00 \text{ MeV}^{-1}$

- $N_{\text{max}}=0, 2, 4$ eigenvalues (almost) identical due to decoupling…
- … but IMSRG truncation artifacts appear eventually (missing induced 3B+ terms)
Evolution of the Hamiltonian Matrix

• **induced couplings** between reference and $N_{\text{max}}=0$ states

• $E(s)$ does not track lowest eigenvalue

\Rightarrow **diagonalize** $H(s)$
Evolution of Ground-State Energies

- strongly enhanced convergence
- plateau in flow
- identify critical s_{max} at which induced many-body terms become relevant

H. Hergert - FRIB Theory Alliance Workshop: “From Bound States to the Continuum”, Jun 12, 2018
12C: Excitation Spectra

IM-NCSM

- $s_{max} = 0.3 \text{ MeV}^{-1}$

NCSM

- $\hbar \Omega = 16 \text{ MeV}$

- $\hbar \Omega = 20 \text{ MeV}$

- EM 500/400 NO2B

- $\lambda = 1.88 \text{ fm}^{-1}$

- $E_{gs} [\text{MeV}]$
 - -92.2

- N_{max}
 - 2
 - 4
 - 6

- $E^* [\text{MeV}]$
 - 1^+
 - (0^+)
 - 0^+
 - 2^+

Results

- „uncertainty band”: **flow parameter variation** from $s_{max}/2$
 to s_{max}

- excellent agreement for converged states
• excellent agreement for converged states

• predict **1+ state** that has not yet been observed experimentally
Epilogue
Where Do We Go from Here?

- Revisit **optical potentials** (à la J. Rotureau et al., PRC 95, 024315)
 - MR-EOM / GCM / … to describe **few-particle and collective** correlation
 - **continuum coupling** for exotic nuclei (see K. Fossez)
 - Use **IMSRG-evolved Hamiltonians** in RGM/NCSMC/…)
- **Utopia:** Can we **systematically** connect many-body system to few-body system via IMSRG (or other RG) methods?
Acknowledgments

S. K. Bogner, K. Fossez, J. Hill, M. Hjorth-Jensen, J. M. Yao
NSCL/FRIB, Michigan State University

S. R. Stroberg
Reed College

T. D. Morris
UT Knoxville & Oak Ridge National Laboratory

J. D. Holt, P. Navrátil
TRIUMF, Canada

E. Gebrerufael, K. Hebeler, S. König
R. Roth, A. Schwenk, C. Stumpf,
K. Vobig, R. Wirth
TU Darmstadt, Germany

R. J. Furnstahl, N. M. Parzuchowski
The Ohio State University

J. Engel
University of North Carolina - Chapel Hill

T. Duguet, V. Somà, A. Tichai
CEA Saclay, France

C. Barbieri
U. Surrey, UK

J. Simonis
Johannes Gutenberg University of Mainz, Germany