

Optical potentials and knockout reactions from Green functions treatment Andrea Idini

"Connecting Bound States to the Continuum"

$$g_{\alpha\beta}(\omega + i\eta) = \sum_{n} \frac{\langle \psi_{0}^{A} | c_{\alpha} | \psi_{n}^{A+1} \rangle \langle \psi_{n}^{A+1} | c_{\beta}^{+} | \psi_{0}^{A} \rangle}{\omega - E_{n}^{A+1} + E_{0}^{A} + i\eta} + \sum_{i} \frac{\langle \psi_{0}^{A} | c_{\alpha}^{+} | \psi_{i}^{A-1} \rangle \langle \psi_{i}^{A-1} | c_{\beta} | \psi_{0}^{A} \rangle}{\omega - E_{0}^{A} + E_{i}^{A-1} - i\eta}$$

Källén-Lehmann spectral representation

Unperturbed case

$$g^{0}(\omega + i\eta) = \sum_{i} \frac{1}{E - \epsilon_{i}^{base} \pm i\eta}$$

Green function self-consistent methods find spectra of the Hamiltonian operator

$$H(A) = T - T_{c.m.}(A+1) + V + W$$

Dyson Equation

$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$

Dyson Equation

$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$

Interaction between the particle and the system (physical choice)

Fragments and changes energy of the "bare" state

$$\Sigma_{\alpha\beta}(\omega + i\eta) = \sum_{r} \frac{m_{\alpha}^{r} m_{\beta}^{r}}{\omega - E_{r} + i\eta}$$

Dyson Equation

$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$

Equation of motion

$$\left(E + \frac{\hbar^2}{2m}\nabla_r^2\right)g(r,r';E,\Gamma) = \delta(r-r') + \int dr''\Sigma^*(r,r'';E,\Gamma)g(r'',r;E,\Gamma)^{\top}$$

Corresponding Hamiltonian

$$H(r,r') = -\frac{\hbar^2}{2m} \nabla_r^2 + \Sigma^*(r,r';E,\Gamma)$$

 Σ corresponds to the Feshbach's generalized optical potential

Escher & Jennings PRC66 034313 (2002)

Hamiltonian method: self consistent Green functions

$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$

(Non) Hamiltonian method: nuclear field theory ansatz

Independent Particle

mean field

Collective Phonon

Random Phase Approximation

Nuclear Field Theory

Coupling of physical quantities Exploits different truncations coupling from Hamiltonian matrix elements

Full single valence space

How the imaginary part arises in dissipative systems

$$g_{\alpha\beta}(\omega + i\eta) = \left[\omega + i\eta - \Sigma_{\alpha\beta}(\omega + i\eta)\right]^{-1}$$

$$\Sigma_{\alpha\beta}(\omega + i\eta) = \sum_{r} \frac{m_{\alpha}^{r}(\omega)m_{\beta}^{r}(\omega)}{\omega - E_{r} + i\eta}$$

Complex roots of the Green function

Implemented in NFT

How the imaginary part arises in dissipative systems

$$g_{\alpha\beta}(\omega + i\eta) = \left[\omega + i\eta - \Sigma_{\alpha\beta}(\omega + i\eta)\right]^{-1}$$

$$\Sigma_{\alpha\beta}(\omega + i\eta) = \sum_{r} \frac{m_{\alpha}^{r}(\omega)m_{\beta}^{r}(\omega)}{\omega - E_{r} + i\eta}$$

Complex roots of the Green function

Implemented in NFT

15/06/2018

Andrea Idini

Nucleon elastic scattering

^{*}Mahaux & Sartor, Adv. Nucl. Phys. 20 (1991), Escher & Jennings PRC66:034313 (2002)

- Solve Dyson equation in HO Space, find $\Sigma_{n,n'}^{l,j*}(E)$

$$\Sigma_{n,n'}^{l,j*}(E)$$

- diagonalize in full continuum momentum space $\Sigma^{l,j*}(k,k',E)$

$$\frac{k^2}{2m}\psi_{l,j}(k) + \int dk' k'^2 \left(\Sigma^{l,j*}(k,k',E)\right)\psi_{l,j}(k') = E \psi_{l,j}(k)$$

Knockout Spectroscopic Factors

$$\frac{k^2}{2m}\psi_{l,j}(k) + \int dk' k'^2 \left(\Sigma^{l,j*}(k,k',E)\right)\psi_{l,j}(k') = E \psi_{l,j}(k)$$

$$SF = \left| \left\langle \mathbf{r} \, \Phi_n^{(A-1)} \middle| \Phi_{g.s.}^A \right\rangle \right|^2$$
 Norm of overlap wavefunctions

But also the shape of the overlap wavefunction!

Conclusions (1)

- The non-local generalized optical potential corresponding to nuclear self energy can be calculated in several, different, ways.
- Imaginary part can arise spontaneously in non-hamiltonian cases.
- Reaction properties calculated from bound state description might differ from effective pure single-particle description.

SRG-N³LO, $\Lambda = 2.66 \text{ fm}^{-1}$

 $n + {}^{16}0 (g.s.)$

Navràtil, Roth, Quaglioni, PRC82, 034609 (2010)

$NNLO_{sat}$ $n + {}^{16}O(g.s. + exc)$

Using the ab initio optical potential for neutron elastic scattering on Oxygen

Overlap function

$$\Psi_{i}(r) = \sqrt{A} \int dr_{1} / dr_{A} \Phi_{(A-1)}^{+}(r_{1}, / r_{A-1}) \Phi_{(A)}^{+}(r_{1}, ..., r_{A})$$

Proton particle-hole gap

EM results from A. Cipollone PRC92, 014306 (2015)

Knockout Spectroscopic Factors

$$\frac{k^2}{2m}\psi_{l,j}(k) + \int dk' k'^2 \left(\Sigma^{l,j*}(k,k',E)\right)\psi_{l,j}(k') = E \psi_{l,j}(k)$$

$$SF = \left|\left\langle \mathbf{r} \; \Phi_n^{(A-1)} \middle| \Phi_{g.S.}^A \right\rangle\right|^2$$
 Calculated from overlap wavefunctions

open circles neutrons, closed protons

Overlap wavefunctions

Nucleus	E_B	$\left\langle r^2 \right\rangle_{WS}^{1/2}$	$\left \left\langle r^2 \right\rangle_{GF}^{1/2} \right $	C_{WS}	C_{GF}	σ_{qf}^{WS}	σ_{qf}^{GF}	σ_{kn}^{WS}	σ_{kn}^{GF}	C^2S_{GF}
(state)	[MeV]	[fm]	[fm]	$\left[\text{fm}^{-1/2} \right]$	$\left \left[\text{fm}^{-1/2} \right] \right $	[mb]	[mb]	[mb]	[mb]	
$^{14}O~(\pi 1p_{3/2})$	8.877	2.856	2.961	6.785	7.172	$\boxed{27.38}$	28.60	27.19	27.42	0.548
Deviation of quasifree (p, pn)						5% <1%				
cross section calculation										
for different wavefunctions WS GF 10-1										
($\sigma_{GF}-\epsilon$	$\sigma_{WS})/\sigma_{W}$	'S	$1 A\rangle$	10-1	L		10		16 O (1p $_{3/2}$)
25	т г	1 1	.	— -				10 ⁻²		
20			*	A	10 ⁻²	(1p _{1/2})		10 ⁻³		
1 🗆	¹⁶ O ▼	•	* *		10-3			10-4	1 1	
1.0	•	•	²² O	k	1		'			·
10	•	²² O	220	$\frac{1}{ A }$	10-1	22 O (1p $_{3/}$	2)	10°	¹⁶ O (2s _{1,}	$_{2}$) (neutron)
5 - •		•		*	10-2		_			:
0				$ A \rangle$	10-3			10 ⁻¹	· Secretary	-

Collaboration with C. Bertulani

r [fm]

% devitation

16

14

10

8

10⁻⁴ 6

r [fm]

Conclusions and Perspectives

- We are developing an interesting tool to study nuclear reactions effectively.
 We have defined a non-local generalized optical potential corresponding to nuclear self energy.
- Spectroscopic Factors from ab-initio overlap wavefunctions differ from effective wood saxon. These do not seem to depend much on proton-neutron asymmetry

Why optical potentials?

- Optical potentials reduce many-body complexity decoupling structure contribution and reactions dynamics.
- Often fitted on elastic scattering data (locally or globally)
- A microscopic model is difficult but worth it

Dickhoff, Charity, Mahzoon, JPG44, 033001 (2017)

Koning, Delaroche, NPA713, 231 (2002)