



# Optical potentials and knockout reactions from Green functions treatment Andrea Idini

"Connecting Bound States to the Continuum"

$$g_{\alpha\beta}(\omega + i\eta) = \sum_{n} \frac{\langle \psi_{0}^{A} | c_{\alpha} | \psi_{n}^{A+1} \rangle \langle \psi_{n}^{A+1} | c_{\beta}^{+} | \psi_{0}^{A} \rangle}{\omega - E_{n}^{A+1} + E_{0}^{A} + i\eta} + \sum_{i} \frac{\langle \psi_{0}^{A} | c_{\alpha}^{+} | \psi_{i}^{A-1} \rangle \langle \psi_{i}^{A-1} | c_{\beta} | \psi_{0}^{A} \rangle}{\omega - E_{0}^{A} + E_{i}^{A-1} - i\eta}$$

Källén-Lehmann spectral representation

Unperturbed case

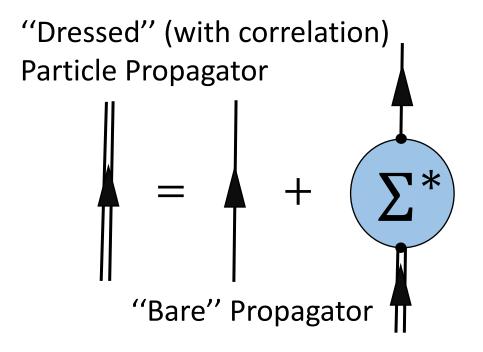
$$g^{0}(\omega + i\eta) = \sum_{i} \frac{1}{E - \epsilon_{i}^{base} \pm i\eta}$$

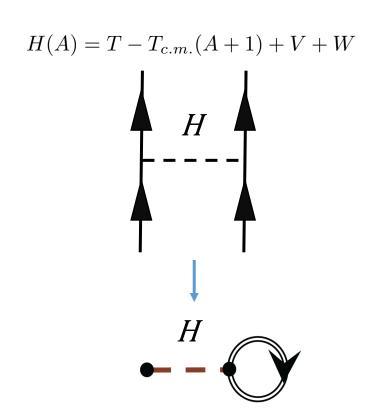
Green function self-consistent methods find spectra of the Hamiltonian operator

$$H(A) = T - T_{c.m.}(A+1) + V + W$$

#### **Dyson Equation**

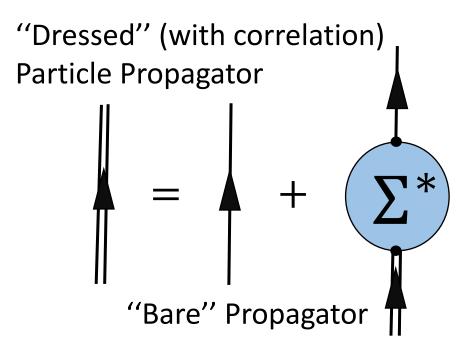
$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$





#### **Dyson Equation**

$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$



Interaction between the particle and the system (physical choice)

Fragments and changes energy of the "bare" state

$$\Sigma_{\alpha\beta}(\omega + i\eta) = \sum_{r} \frac{m_{\alpha}^{r} m_{\beta}^{r}}{\omega - E_{r} + i\eta}$$

#### **Dyson Equation**

$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$

**Equation of motion** 

$$\left(E + \frac{\hbar^2}{2m}\nabla_r^2\right)g(r,r';E,\Gamma) = \delta(r-r') + \int dr''\Sigma^*(r,r'';E,\Gamma)g(r'',r;E,\Gamma)^{\top}$$

#### **Corresponding Hamiltonian**

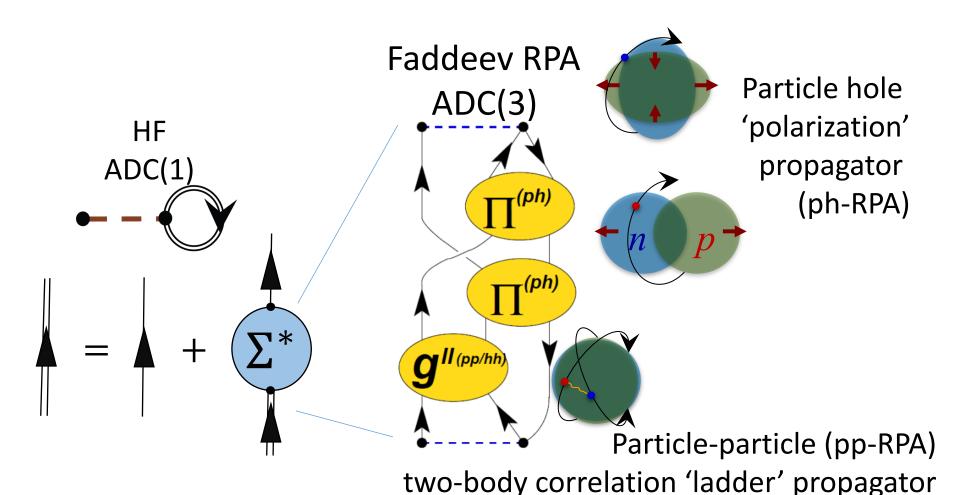
$$H(r,r') = -\frac{\hbar^2}{2m} \nabla_r^2 + \Sigma^*(r,r';E,\Gamma)$$

 $\Sigma$  corresponds to the Feshbach's generalized optical potential

Escher & Jennings PRC66 034313 (2002)

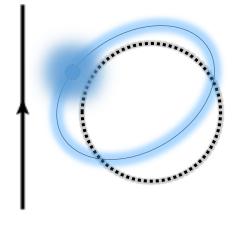
#### Hamiltonian method: self consistent Green functions

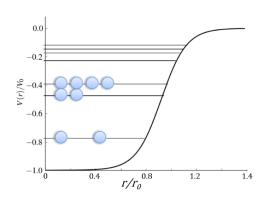
$$g(\omega + i\eta) = g^{0}(\omega + i\eta) + g^{0}(\omega + i\eta)\Sigma^{*}(\omega + i\eta)g(\omega + i\eta)$$



(Non) Hamiltonian method: nuclear field theory ansatz

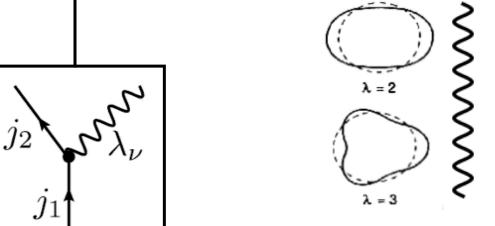
**Independent Particle** 

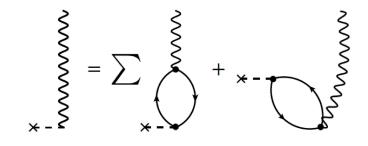




mean field

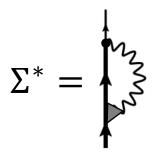
**Collective Phonon** 

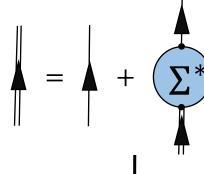


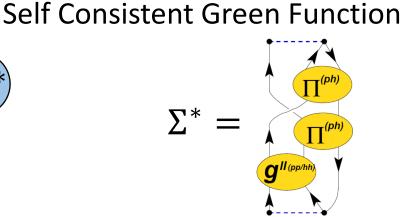


Random Phase Approximation

**Nuclear Field Theory** 

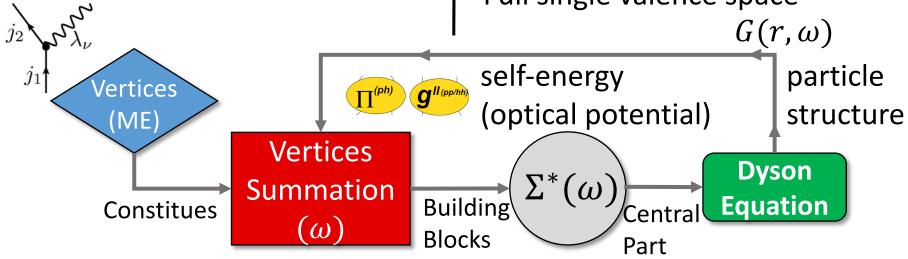






Coupling of physical quantities Exploits different truncations coupling from Hamiltonian matrix elements

Full single valence space



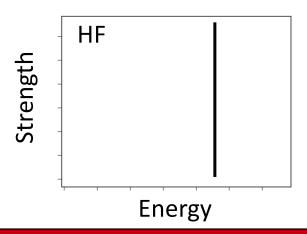
How the imaginary part arises in dissipative systems

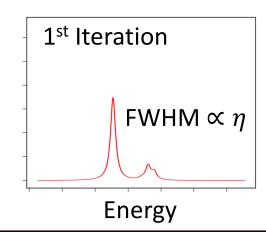
$$g_{\alpha\beta}(\omega + i\eta) = \left[\omega + i\eta - \Sigma_{\alpha\beta}(\omega + i\eta)\right]^{-1}$$

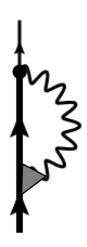
$$\Sigma_{\alpha\beta}(\omega + i\eta) = \sum_{r} \frac{m_{\alpha}^{r}(\omega)m_{\beta}^{r}(\omega)}{\omega - E_{r} + i\eta}$$

Complex roots of the Green function

Implemented in NFT







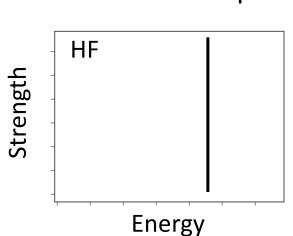
How the imaginary part arises in dissipative systems

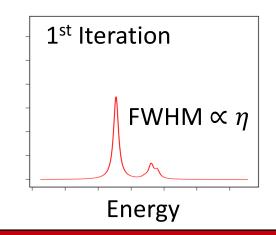
$$g_{\alpha\beta}(\omega + i\eta) = \left[\omega + i\eta - \Sigma_{\alpha\beta}(\omega + i\eta)\right]^{-1}$$

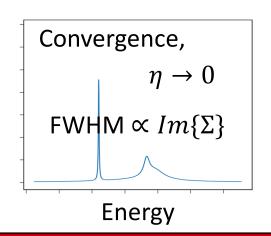
$$\Sigma_{\alpha\beta}(\omega + i\eta) = \sum_{r} \frac{m_{\alpha}^{r}(\omega)m_{\beta}^{r}(\omega)}{\omega - E_{r} + i\eta}$$

Complex roots of the Green function

Implemented in NFT



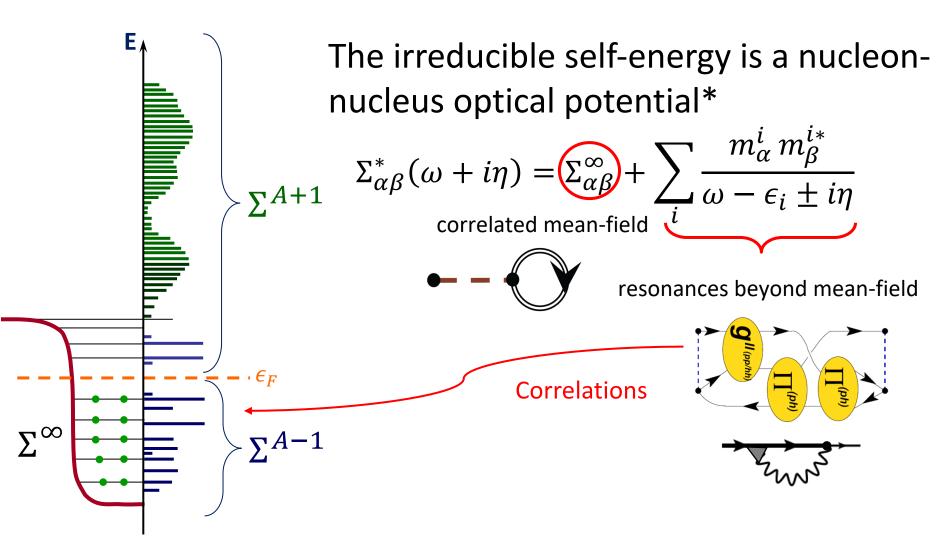




15/06/2018

Andrea Idini

#### Nucleon elastic scattering



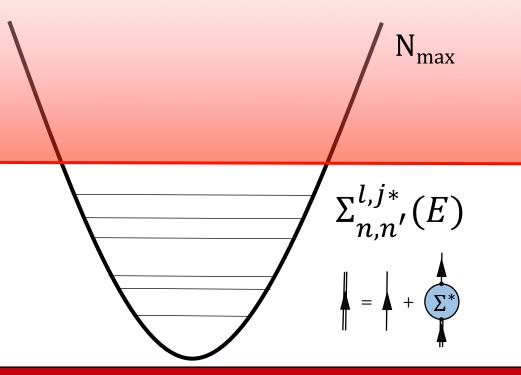
<sup>\*</sup>Mahaux & Sartor, Adv. Nucl. Phys. 20 (1991), Escher & Jennings PRC66:034313 (2002)

- Solve Dyson equation in HO Space, find  $\Sigma_{n,n'}^{l,j*}(E)$ 

$$\Sigma_{n,n'}^{l,j*}(E)$$

- diagonalize in full continuum momentum space  $\Sigma^{l,j*}(k,k',E)$ 

$$\frac{k^2}{2m}\psi_{l,j}(k) + \int dk' k'^2 \left(\Sigma^{l,j*}(k,k',E)\right)\psi_{l,j}(k') = E \psi_{l,j}(k)$$

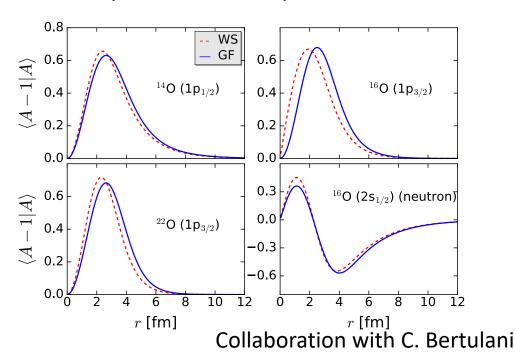


#### **Knockout Spectroscopic Factors**

$$\frac{k^2}{2m}\psi_{l,j}(k) + \int dk' k'^2 \left(\Sigma^{l,j*}(k,k',E)\right)\psi_{l,j}(k') = E \psi_{l,j}(k)$$

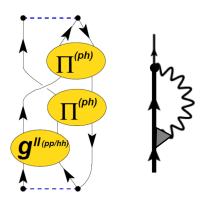
$$SF = \left| \left\langle \mathbf{r} \, \Phi_n^{(A-1)} \middle| \Phi_{g.s.}^A \right\rangle \right|^2$$
 Norm of overlap wavefunctions

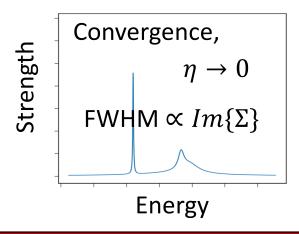
But also the shape of the overlap wavefunction!

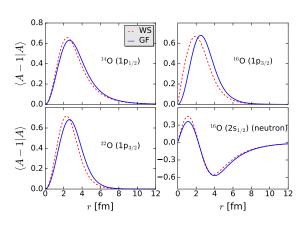


## Conclusions (1)

- The non-local generalized optical potential corresponding to nuclear self energy can be calculated in several, different, ways.
- Imaginary part can arise spontaneously in non-hamiltonian cases.
- Reaction properties calculated from bound state description might differ from effective pure single-particle description.

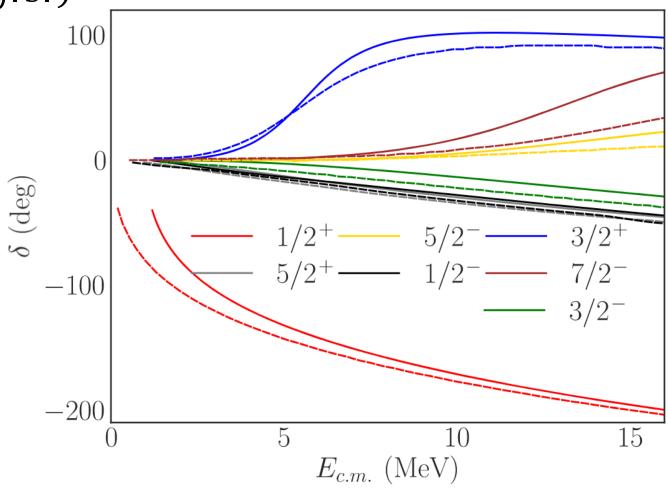




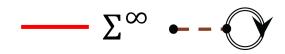


SRG-N<sup>3</sup>LO,  $\Lambda = 2.66 \text{ fm}^{-1}$ 

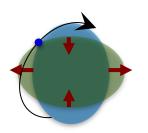
 $n + {}^{16}0 (g.s.)$ 

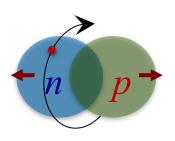


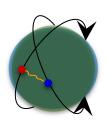
Navràtil, Roth, Quaglioni, PRC82, 034609 (2010)

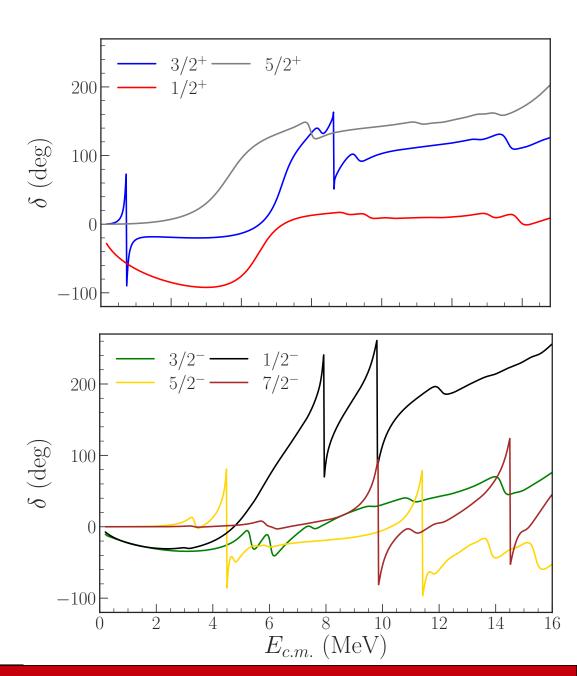


# $NNLO_{sat}$ $n + {}^{16}O(g.s. + exc)$

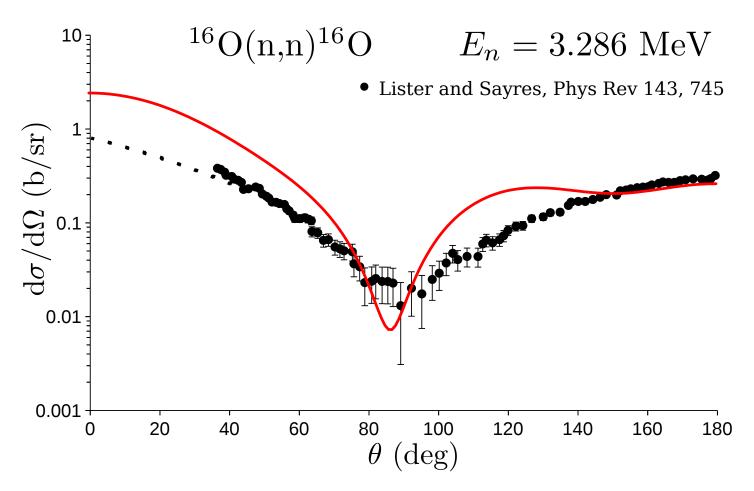


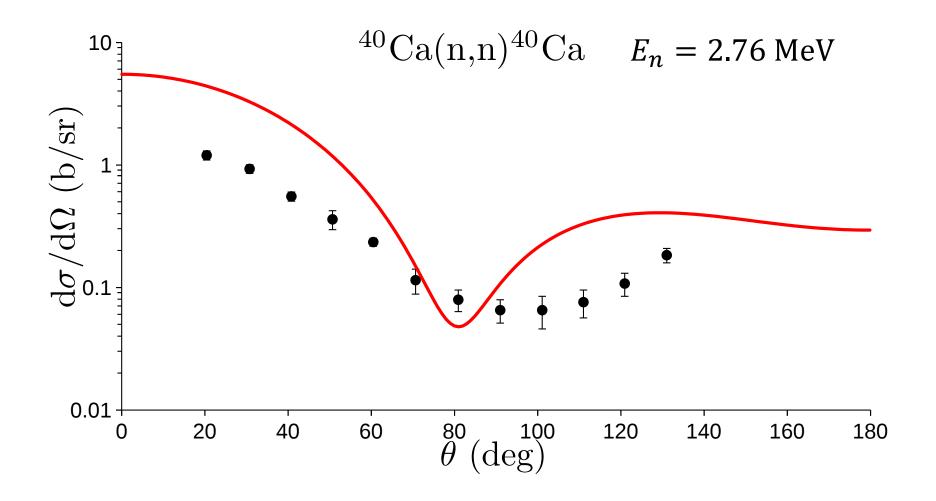






Using the ab initio optical potential for neutron elastic scattering on Oxygen

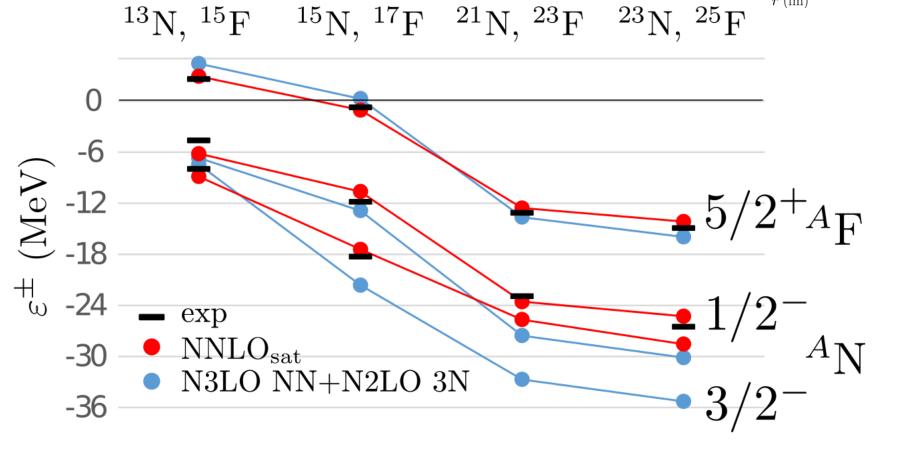




#### Overlap function

$$\Psi_{i}(r) = \sqrt{A} \int dr_{1} / dr_{A} \Phi_{(A-1)}^{+}(r_{1}, / r_{A-1}) \Phi_{(A)}^{+}(r_{1}, ..., r_{A})$$

#### Proton particle-hole gap

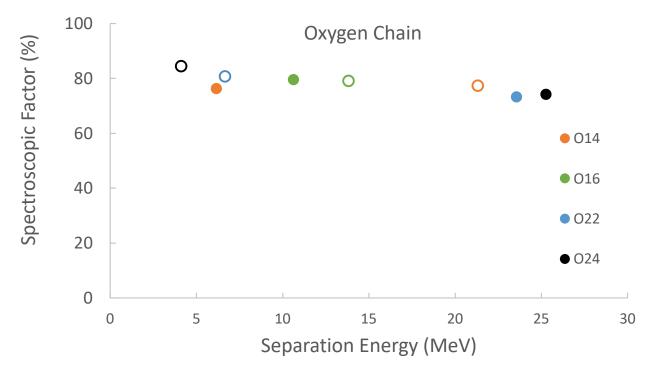


EM results from A. Cipollone PRC92, 014306 (2015)

#### **Knockout Spectroscopic Factors**

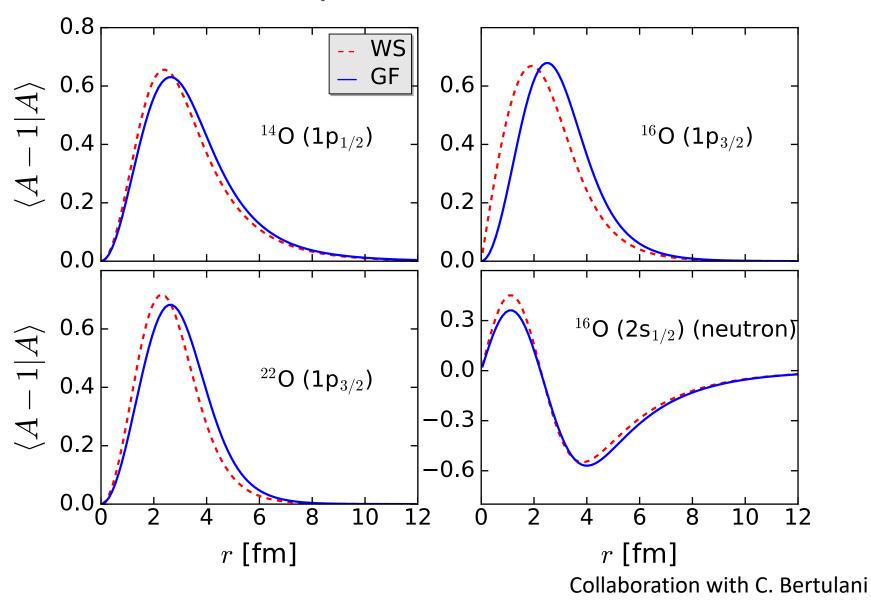
$$\frac{k^2}{2m}\psi_{l,j}(k) + \int dk' k'^2 \left(\Sigma^{l,j*}(k,k',E)\right)\psi_{l,j}(k') = E \psi_{l,j}(k)$$

$$SF = \left|\left\langle \mathbf{r} \; \Phi_n^{(A-1)} \middle| \Phi_{g.S.}^A \right\rangle\right|^2$$
 Calculated from overlap wavefunctions



open circles neutrons, closed protons

#### Overlap wavefunctions



| Nucleus                                   | $E_B$                  | $\left\langle r^2 \right\rangle_{WS}^{1/2}$ | $\left  \left\langle r^2 \right\rangle_{GF}^{1/2} \right $ | $C_{WS}$                          | $C_{GF}$                                         | $\sigma_{qf}^{WS}$    | $\sigma_{qf}^{GF}$ | $\sigma_{kn}^{WS}$ | $\sigma_{kn}^{GF}$                | $C^2S_{GF}$              |
|-------------------------------------------|------------------------|---------------------------------------------|------------------------------------------------------------|-----------------------------------|--------------------------------------------------|-----------------------|--------------------|--------------------|-----------------------------------|--------------------------|
| (state)                                   | [MeV]                  | [fm]                                        | [fm]                                                       | $\left[ \text{fm}^{-1/2} \right]$ | $\left  \left[ \text{fm}^{-1/2} \right] \right $ | [mb]                  | [mb]               | [mb]               | [mb]                              |                          |
| $^{14}O~(\pi 1p_{3/2})$                   | 8.877                  | 2.856                                       | 2.961                                                      | 6.785                             | 7.172                                            | $\boxed{27.38}$       | 28.60              | 27.19              | 27.42                             | 0.548                    |
|                                           |                        |                                             |                                                            |                                   |                                                  |                       |                    |                    |                                   |                          |
| Deviation of quasifree $(p, pn)$          |                        |                                             |                                                            |                                   |                                                  | 5% <1%                |                    |                    |                                   |                          |
| cross section calculation                 |                        |                                             |                                                            |                                   |                                                  |                       |                    |                    |                                   |                          |
| for different wavefunctions  WS  GF  10-1 |                        |                                             |                                                            |                                   |                                                  |                       |                    |                    |                                   |                          |
| (                                         | $\sigma_{GF}-\epsilon$ | $\sigma_{WS})/\sigma_{W}$                   | 'S                                                         | $1 A\rangle$                      | 10-1                                             | L                     |                    | 10                 |                                   | $^{16}$ O (1p $_{3/2}$ ) |
| 25                                        | т г                    | 1 1                                         | <del>.</del>                                               | — <del>-</del>                    |                                                  |                       |                    | 10 <sup>-2</sup>   |                                   |                          |
| 20                                        |                        |                                             | *                                                          | A                                 | 10 <sup>-2</sup>                                 | (1p <sub>1/2</sub> )  |                    | 10 <sup>-3</sup>   |                                   |                          |
| 1 🗆                                       | <sup>16</sup> O ▼      | •                                           | * *                                                        |                                   | 10-3                                             |                       |                    | 10-4               | 1 1                               |                          |
| 1.0                                       | •                      | •                                           | <sup>22</sup> O                                            | k                                 | 1                                                |                       | '                  |                    |                                   | ·                        |
| 10                                        | •                      | <sup>22</sup> <b>O</b>                      | 220                                                        | $\frac{1}{ A }$                   | 10-1                                             | $^{22}$ O (1p $_{3/}$ | 2)                 | 10°                | <sup>16</sup> O (2s <sub>1,</sub> | $_{2}$ ) (neutron)       |
| 5 - •                                     |                        | •                                           |                                                            | *                                 | 10-2                                             |                       | _                  |                    |                                   | :                        |
| 0                                         |                        |                                             |                                                            | $  A \rangle$                     | 10-3                                             |                       |                    | 10 <sup>-1</sup>   | · Secretary                       | -                        |

Collaboration with C. Bertulani

r [fm]

% devitation

16

14

10

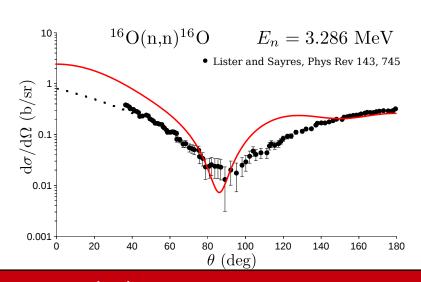
8

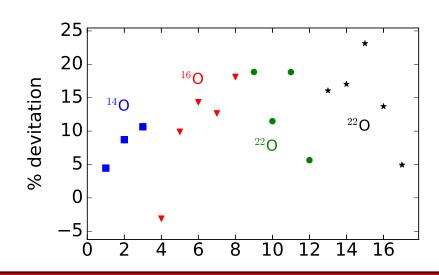
10<sup>-4</sup> 6

r [fm]

## **Conclusions and Perspectives**

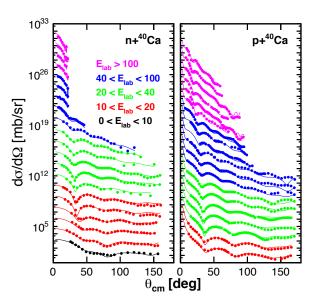
- We are developing an interesting tool to study nuclear reactions effectively.
   We have defined a non-local generalized optical potential corresponding to nuclear self energy.
- Spectroscopic Factors from ab-initio overlap wavefunctions differ from effective wood saxon. These do not seem to depend much on proton-neutron asymmetry



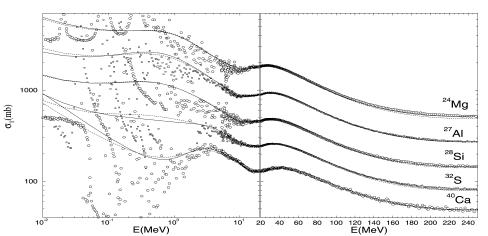


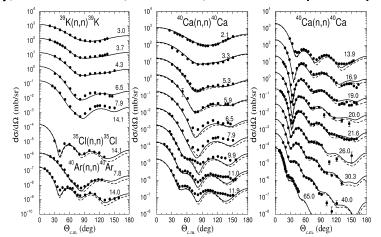
#### Why optical potentials?

- Optical potentials reduce many-body complexity decoupling structure contribution and reactions dynamics.
- Often fitted on elastic scattering data (locally or globally)
- A microscopic model is difficult but worth it



Dickhoff, Charity, Mahzoon, JPG44, 033001 (2017)





Koning, Delaroche, NPA713, 231 (2002)