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Figure adapted from W. Catford.
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Goals:

Starting from a bound state method
(square integrable basis expansion),
obtain scattering properties of the
system.

Generalize for scattering properties
of many-body systems.

Outline:

Introduction

Scattering in Finite Bases
Regularization

Coulomb Scattering
Simple example

Channel Construction
Many-body examples.
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/
Internal ; External
V=Voou+W V., V ="Voou Internal P-space Hamiltonian
; contains interaction potential
r— o External Q-space only has
free components: T + Vioul
(0)
Hpp HPQ Matching condition at some
basis limit N. Potential matrix
elements at limit ~ 0O
2/(0) 2/(0)
QP QO
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(0) Implications
Hpp Hpo P
« Solving an approximate potential
(0) (0)
HQP %QQ
N

N
V= Z 1) Vi (1]

Coulomb matrix elements do not
fall-off fast enough to ignore.

10

Solution requires knowledge of
expansion coefficients.
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In order to match the internal part, Regular Solution Irregular Solution

we need to know what the free FE(% k?“) Gé (77, k’f’)

part looks like.
@)

Three-term recursion for neutral Z (H(O) E5nn ) /g(n, k) 0

particle; infinite terms for charged. /
n’=0

For the regular solution, coefficients

obtained through direct integration Fn€ 77, /¢ FE 777 kT)d

with basis function.

The irregular solution cannot be

obtained as an expansion due to IC”I“ ~ 7‘_2
behavior near the origin. GE (777 )
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At “infinity” (large n) the irregular —
expansion coefficients should obey (0)
the same recursion relations. Z (Hnn/ — E5nn’)Gn’£(777 k) — 55n0

At the “origin” (n = 0) we add an n'—0
inhomogeneity

In r-space there is only one choice 0 ~
that preserves the form of the (H( ) — E) Cy (777 T) — 5§b0 (T)

discrete equations

Solve r-space problem via a G(T, 7“/) ~ FE (77, ]{7“< )GE (77, k?“>)

Green’s function
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1.5¢ WoRK IM PROGARSS

Good behavior at large distances,

1 ) O [ -.~.~ ___---...~

S ~ no divergence at small distances.

Strength of inhomogeneity fixed
by requiring:

0.0

-0.5¢

Ce(n,r — 00) = Ge(n, kr)
6 ~ 1/F0£(777 k)
L

0 5 10 15 20 Coefficients can now be obtained
r by direct integration

Gre(n, k) = / b5 (1) Coln, r)dr

-1.0¢
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0
The internal part is governed by the Hpp H%)Q
(matrix) equation:
Hpp Up + HY)? oVo=LVp Hop Hoo
N

For any P-space component we can
use the resolvent

Uppr = [(EI - H)_l]

pp’

N
0
V), = Z gpp’H;S’;\Ijq

p =0
qgeQ
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In the Q-space (outside) we have

0 Uy = aFgu(n, k) +0Ge(n, k)
\I/N = ng ( )\If On the inside, we require that
\IJN — CLFNg(n, k) —+ bGNg(U, k‘)

Matching at the boundary N
(summation implied)

v F ng (O) Fqﬁ
a  Gne—GnpH “”qu

tan oy, =
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Special case: HORSE method

I'NN+1

SN (E) Gn N Sn+1(E)
\ ~ T /

Fne — GnpHSY Fyp

L/GNE _‘ng Hzgg) Gqﬁ\
() ONN TN}V—H

Recover HORSE
exactly for neutral case.

tan 0y, =

C'n Cni1(E)
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But what about Coulomb?

Phase shifts for Coulomb problem require Summations over infinite Q-space
summation of F, G amplitudes over the can be converted to summations
infinite Q-space. over finite P-space.
O p _ o (0>) ,
Hpq Fae (E Opp pr’ e We are left with only P-space
0 . .
HOG, = ( ES,y — H}Sp}) Goi + BSop quantities that are known (semi-)

analytically.
Fne — G (EFpg - HS}FW)

GNE — ng ((E =+ ﬁéOp)Gpﬁ — ngngp’E)

tanody = —
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Does it work?
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Woods-Saxon potential phase
shifts converge with increasing
size of basis.

Extrapolate resonance positions
and widths from smaller
calculations?

Can we modify matrix elements
to accelerate convergence?

Note: We never specified a basis.
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Why Harmonic Oscillator then?

Simple answer: Translational Invariance of Many-Body wave function.

Our goal is to describe scattering Many-body channels are no

with clusters; we need to maintain longer orthogonal.

translational invariance when Yoor Weor - HO Wy = ENopr U
constructing the relative motion PP Pt 7ipg¥o [
channels. Norm Kernel imposes a second

limit to the matching “radius”.



Reactions with Clusters in

Harmonic Oscillator Basis

T | But first... .
= \/2mwh(mw“ ~ ) Many body case B =\ 3 am B it Bu)
h

4
= A o (O] + ) — Dy =[5 Ry

Recouple CM excited clusters

Control single cluster with Moshinsky Brackets
CM quantum numbers

Yo (R) At (p) VL5 = A M b1, (Ra) X gt (Rp)], Ua W,

nily

¢, m with B,,LL
nodes with [BT X BTL()O) nate
L, = [BT % B] (1) Many-body basis channels constructed
m with the boosting method are translationally
invariant, fully antisymmetric and have
definite HO relative motion.
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Back to treating the Norm Kernel

HppVpr + Hfg;O)Q\IjQ = ENpp/Up,  Asymptotic matching:
Outside the matching “radius” assume

The P-Space resolvent now becomes: Norm Kernel is Unit Matrix

Gy = [(EN —H)7Y] Vo =alko + bGo
QNpHpq by = QNp(EFp — pr,Fp/)

Need to be careful about summation 7

only over Pauli allowed channels. This P-Space summation

has no forbidden channels
No change for asymptotic amplitudes

F, G (only reduced mass). Internal part of matching

Uy =Ny, ” (aF, + bG))
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Does it still work?

V&

%
140 140
n + o P+«
120 - S B S N 120
‘/-" _--———--‘:"*"1': TR TTETTES e mseas o 0 8 ——-8—-»-==TToooaaollIIzz
/,”— ’_,f” _____
100 A Y Pt 100 -
Ve
/I
7 80 / { w80
el 1 el
< 60{ /@ < 60-
. 1
o) i1 S
of !
40 ¥ 40
] —— hw =14 MeV —— fw =14 MeV
20 ) 20 - )
—— Jw =20 MeV —— hw =20 MeV
—— hw =25 MeV —— Jw =25 MeV
0 0-
0 1 2 3 1 5 6 7 8 0 1 2 3 1 5 6 7 8
E (MeV) E (MeV)
Experiment: Nucl. Phys. A180, 225(1972)

Experiment: Phys. Rev. 168, 1114 (1968)
Nucl. Phys. A287, 317 (1977)
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140 A RGM Hamilton Kernel is
1204 heavily tri-diagonal
-31.8 21.9 0.15 0.50 0.03\

0 21.9 6.12 38.0 0.40 0.77
S 80 0.15 380 41.0 53.6 0.67
S ; 0.50 0.40 53.6 73.4 685
< § \ 0.03 077 067 685 104)

40 J — N=b

20 /l' T xi* Do the small off-tridiagonal

of i E_ . matrix elements affect
xperiment _
1 | | | | | | | dynamics?
0 2 4 6 8 10 12 14
E (MeV)

Experiment: Rev. Mod. Phys. 41, 247 (1969)
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I'= 2P (pe)|g(pe)|?

15}
4* —38.2 MeV 4* —43.4 MeV -7
— 4+ —45.1 MeV 4 5 6
>
é) 10f
= 0.8 4 ——— RGM N =5
F o vMC
m 0.6
5 2t —-52.1 MeV 0.4
2t —48.2 MeV —
2+ 535 MeV T 02y
0" —55.6 MeV R S
+ —
o 0" —522Mev 0 565 Mev. a+a 091
RGM Exp. NCSM |
0 2 1 6 8

p (fm)

https://www.phy.anl.gov/theory/research/overlap_old/be8.aa
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a -+ He

—— EXP
25| —e— RGM N=45 hw = 20 MeV hw = 25 MeV
—— RGM N=89

20, —e— NCSM Nypoy=4

Need full three
body extension for
proper scattering
study.

E, (MeV)
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Summary: Some References:

» Successfully treated Coulomb * Moshinsky & Smirnov, Harmonic Oscillator
part of the interaction in a in Modern Physics

« Alhaidari et al., The J-matrix Method
« Bang et al., Ann. Phys. (NY) 280, 299 (2000)
» Shirokov et al., PRC 94, 064320 (2016)

square integrable basis expansion
» Using the boosting method,

constructed many-body channels - Heller & Yamani, Phys. Rev. A9, 1201
and evaluated phase shifts. (1974)
 Yamani & Fishman, J Math Phys 16, 410
Outlook: (1975)
e Multi-channel S-matrix » Alhaidari et al., Phys Lett A 364, 372 (2007)

« Ternary cluster systems

Thanks to:

Coulomb wave functions: _ N
Th - A. Volya, A. Shirokov, R. W
Michel, CPC 176, 232 (2007) Intg:’;é’tions_% V%’ary Shirokov, R. Wiringa



