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Motivation

terra incognita

at the doorstep. . .

? ? ?

bound dineutron state not excluded by pionless EFT
Hammer + SK, PLB 736 208 (2014)

recent indications for a three-neutron resonance state. . .
Gandolfi et al., PRL 118 232501 (2017)

. . . although excluded by previous theoretical work
Offermann + Glöckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71 044004 (2005)

possible evidence for tetraneutron resonance
Kisamori et al., PRL 116 052501 (2016)
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Short (recent) history of tetraneutron states

1 2002: experimental claim of bound tetraneutron Marques et al., PRC 65 044006

2 2003: several studies indicate unbound four-neutron system
Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501

3 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003

4 2016: RIKEN experiment: possible tetraneutron resonance
ER = (0. ± . stat. ± . syst.) Me , . . Me Kisamori et al., PRL 052501

5 following this: several new theoretical investigations
complex scaling need unphys. T = 3 2 3N force r strong rescaling

Hiyama et al., PRC 044004 (2016),; Deltuva, PLB 238 (2018)

incompatible predictions:
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Gandolfi et al., PRL 232501 (2017)

indications for three-neutron resonance. . .
. . . lower in energy than tetraneutron state
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How to tackle resonances?

Resonances

metastable states

decay width ↔ lifetime
1 2 3 4 5

r
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1 Look for jump by π in scattering phase shift:

!simple % possibly ambiguous (background), need 2-cluster system
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2 Find complex poles in S-matrix:
e.g., Glöckle, PRC 564 (1978); Borasoy et al., PRC 055201 (2006); . . .

!direct, clear signature% technically challenging, needs analytic pot.

3 Put system into peri dic b x!
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↔

2 Find complex poles in S-matrix:
e.g., Glöckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); . . .

!direct, clear signature% technically challenging, needs analytic pot.

3 Put system into periodic box!
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Finite periodic boxes

physical system enclosed
in finite volume (box)

typically used:
periodic boundary conditions

 volume-dependent energies
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Finite periodic boxes

physical system enclosed
in finite volume (box)

typically used:
periodic boundary conditions

 volume-dependent energies

Lüscher formalism

Physical properties encoded in the L-dependent energy levels!

infinite-volume S-matrix governs discrete finite-volume spectrum

PBC natural for lattice calculations. . .

. . . but can also be implemented with other methods
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General bound-state volume dependence

volume dependence ↔ overlap of asymptotic wave functions
Lüscher, Commun. Math. Phys. 104 177 (1986); . . .

κA|N−A =
√

2µA|N−A(BN −BA−BN−A)

Volume dependence of N -body bound state

∆BN (L) ∝ (κA|N−AL)1−d/2Kd/2−1(κA|N−AL)

∼ exp
(

−κA|N−AL
)

/L(d−1)/2 as L → ∞
(L = box size, d no. of spatial dimensions, Kn = Bessel function)

SK and D. Lee, PLB 779, 9 (2018)

channel with smallest κA|N−A determines asymptotic behavior
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Numerical results

SK and D. Lee, PLB 779, 9 (2018)

N	=	2
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→֒ straight lines ↔ excellent agreement with prediction

N BN Lmin . . . Lmax κfit κ1|N−1

d = 1, V0 = −1.0, R = 1.0

2 0.356 20 . . . 48 0.59536(3) 0.59625
3 1.275 15 . . . 32 1.1062(14) 1.1070
4 2.859 12 . . . 24 1.539(3) 1.541
5 5.163 12 . . . 20 1.916(21) 1.920

d = 3, V0 = −5.0, R = 1.0

2 0.449 15 . . . 24 0.6694(2) 0.6700
3 2.916 4 . . . 14 1.798(3) 1.814
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Finite-volume resonance signatures

Lüscher formalism: phase shift ↔ box energy levels

p cot δ0(p) =
1

πL
S(η) , η =

(
Lp

2π

)2

, p = p
(
E(L)

)

Lüscher, Nucl. Phys. B 354 531 (1991); . . .

resonance contribution  avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); . . .

Effect can be very subtle in practice. . .
Bernard et al., JHEP 024 (2008); Döring et al., EPJA 139 (2011); . . .
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Lüscher formalism: phase shift ↔ box energy levels

p cot δ0(p) =
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, p = p
(
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)

Lüscher, Nucl. Phys. B 354 531 (1991); . . .

resonance contribution  avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); . . .
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no interaction, δ(p) = 0

→֒ free levels ∼ 1/L

Effect can be very subtle in practice. . .
Bernard et al., JHEP 024 (2008); Döring et al., EPJA 139 (2011); . . .
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Finite-volume resonance signatures

Lüscher formalism: phase shift ↔ box energy levels
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Effect can be very subtle in practice. . .
Bernard et al., JHEP 0808 024 (2008); Döring et al., EPJA 47 139 (2011); . . .
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Discrete variable representation

Needed: calculation of several few-body energy levels

difficult to achieve with QMC methods Klos et al., PRC 94 054005 (2016)

direct discretization possible, but not very efficient

→֒ use a Discrete Variable Representation (DVR)
well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

basis functions localized at grid points

potential energy matrix diagonal

kinetic energy matrix sparse (in d > 1). . .

. . . or implemented via Fast Fourier Transform

periodic boundary condistions
↔ plane waves as starting point -6 -4 -2 2 4 6

-0.2
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0.8

1.0
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DVR construction

start with some initial basis; here: φi(x) = 1√
L

exp

(

i
2πi

L
x

)

consider (xk, wk) such that
N/2−1∑

k=−N/2
wk φ

∗
i (xk)φj(xk) = δij

-6 -4 -2 2 4 6
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0.3

unitary trans.

−→

Uki =
√
wkφi(xk)

-6 -4 -2 2 4 6

-0.2
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0.4

0.6

0.8

1.0

DVR states

ψk(x) localized at xk, ψk(xj) = δkj/
√
wk

note: momentum mode φi ↔ spatial mode ψk
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DVR features

1 potential energy is diagonal!

〈ψk|V |ψl〉 =

∫

dxψk(x)V (x)ψl(x)

≈
N/2−1

∑

n=−N/2

wn ψk(xn)V (xn)ψl(xn) = V (xk)δkl

no need to evaluate integrals

number N of DVR states controls quadrature approximation













2 kinetic energy is simple (via FFT) r sparse (in d > )!

plane waves φi are momentum eigenstates T |ψk〉 ∼ F−1⊗ p2 ⊗ F |ψk〉
〈ψk|T |ψl〉 = known in closed form

֒ replicated for each co rdinate, with Kronecker deltas for the rest
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∫
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≈
N/2−1

∑

n=−N/2

wn ψk(xn)V (xn)ψl(xn) = V (xk)δkl

no need to evaluate integrals

number N of DVR states controls quadrature approximation













2 kinetic energy is simple (via FFT) or sparse (in d > 1)!

plane waves φi are momentum eigenstates  T̂ |ψk〉 ∼ F−1⊗ p̂2 ⊗ F |ψk〉
〈ψk|T̂ |ψl〉 = known in closed form

→֒ replicated for each coordinate, with Kronecker deltas for the rest
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General DVR basis states

construct DVR basis in simple relative coordinates. . .

. . . because Jacobi coord. would complicate the boundary conditions

separate center-of-mass energy (choose P = 0)

mixed derivatives in kinetic energy operator

xi =
n∑

i=1

Uijri

Uij =







δij for i, j < n

−1 for i < n, j = n

1/n for i = n

General DVR state

|s〉 = |(k1,1, · · · , k1,d), · · · , (kn−1,1, · · · ); spins〉 ∈ B

basis size: dimB = (2S + 1)n ×Nd×(n−1)

Few-body resonances from finite-volume calculations – p. 12



(Anti-)symmetrization and parity

Permutation symmetry

for each |s〉 ∈ B, construct |s〉A = N
∑

p∈Sn

sgn(p)Dn(p) |s〉

then |s〉A is antisymmetric: A |s〉A = |s〉A
for bosons, leave out sgn(p)  symmetric state

Dn(p) |s〉 = some other |s′〉 ∈ B — modulo PBC

This operation partitions the rginal basis, i.e., each state
appears in at most one (anti-)symmetric combination.

efficient reduction to (anti-)symmetrized rthonormal basis

֒ no need f r numerically expensive diagonalization!

reduced, significantly smaller: N Nreduced ≈ N/n!

Note: parity (with projector P± = ± P) can be handled analogously.
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(Anti-)symmetrization and parity

Permutation symmetry

for each |s〉 ∈ B, construct |s〉A = N
∑

p∈Sn

sgn(p)Dn(p) |s〉

then |s〉A is antisymmetric: A |s〉A = |s〉A
for bosons, leave out sgn(p)  symmetric state

Dn(p) |s〉 = some other |s′〉 ∈ B — modulo PBC

This operation partitions the orginal basis, i.e., each state
appears in at most one (anti-)symmetric combination.

efficient reduction to (anti-)symmetrized orthonormal basis

→֒ no need for numerically expensive diagonalization!

B → Breduced, significantly smaller: N → Nreduced ≈ N/n!

Note: parity (with projector P± = 1 ± P) can be handled analogously.
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DVR computational aspects

DVR basis sizeN = Nspin ( ×Nisospin) ×N
ndim×(nbody−1)
DVR

Nspin = (2S + 1)nbody , Nisospin = 1 for neutrons only

3n: 8 ×N6
DVR, 4n: 16 ×N9

DVR  large-scale calculation
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DVR computational aspects

DVR basis sizeN = Nspin ( ×Nisospin) ×N
ndim×(nbody−1)
DVR

Nspin = (2S + 1)nbody , Nisospin = 1 for neutrons only

3n: 8 ×N6
DVR, 4n: 16 ×N9

DVR  large-scale calculation

diagonalization via distributed Lanczos algorithm (PARPACK)

 large matrix-vector products

kinetic part (via FFT) in original basis (before reduction)

→֒ expansion/reduction via sparse matrices















 =

reduce
︷ ︸︸ ︷






×
(

F−1⊗ p̂2 ⊗ F
)

×

expand
︷ ︸︸ ︷




















(note: kinetic matrix diagonal in spin-configurations space)

potential part still diagonal in symmetry-reduced basis
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Broken symmetry

The finite volume breaks the symmetry of the system:

rotation group SO(3)

→
cubic group O

Irreducible representations of SO(3) are reducible with respect to O!

finite subgroup of SO(3)

number of elements = 24

five irreducible representations

Γ A1 A2 E T1 T2

dim Γ 1 1 2 3 3
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Cubic projection

Cubic projector

PΓ =
dim Γ

24

∑

R∈O
χΓ(R)Dn(R) , χΓ(R) = character

Johnson, PLB 114 147 (1982)

Dn(R) realizes a cubic rotation R on the n-body DVR basis

 permutation/inversion of relative coordinate components

indices are wrappen back into range −N/2, . . . , N/2 − 1

e.g. −→

numerical implementation: H H + λ( − PΓ) , λ E
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Cubic projection

Cubic projector

PΓ =
dim Γ

24

∑

R∈O
χΓ(R)Dn(R) , χΓ(R) = character

Johnson, PLB 114 147 (1982)

Dn(R) realizes a cubic rotation R on the n-body DVR basis

 permutation/inversion of relative coordinate components

indices are wrappen back into range −N/2, . . . , N/2 − 1

e.g. −→

numerical implementation: Ĥ → Ĥ + λ(1 − PΓ) , λ ≫ E
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Two-body check: anything goes

V (r) = V0 exp

(

−
(r − a

R0

)2
)

→֒ use barrier to produce S-wave resonance
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k
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Two-body check: anything goes

V (r) = V0 exp

(

−
(r − a

R0

)2
)

→֒ use barrier to produce S-wave resonance
2 4 6 8 10

r

1

2

3

4

5

6

V(r)

V0	=	6.0
V0	=	2.0

δ(
k
)	
[d
eg
]

0

−60

−120

−180

−240

−300

−360

−420

E
0 2 4 6 8 10

phase shifts
i−0.0391.592

Im
	E

−0.15

−0.12

−0.10

−0.08

−0.05

−0.03

0.00

Re	E

1.00 1.25 1.50 1.75 2.00 2.25

S-matrix pole

finite-volume spectra

Few-body resonances from finite-volume calculations – p. 17



Two-body check: anything goes

V (r) = V0 exp

(

−
(r − a

R0

)2
)

→֒ use barrier to produce S-wave resonance
2 4 6 8 10

r

1

2

3

4

5

6

V(r)

V0	=	6.0
V0	=	2.0

δ(
k
)	
[d
eg
]

0

−60

−120

−180

−240

−300

−360

−420

E
0 2 4 6 8 10

phase shifts
i−0.0391.592

Im
	E

−0.15

−0.12

−0.10

−0.08

−0.05

−0.03

0.00

Re	E

1.00 1.25 1.50 1.75 2.00 2.25

S-matrix pole

finite-volume spectra

5 6 7 8 9 10
L

0

2

4

6

8

10

E

A+
1 rep.

5 6 7 8 9 10
L

0

2

4

6

8

10

E

A+
1 rep.

Few-body resonances from finite-volume calculations – p. 17



Three-body check

Take established three-body resonance from literature:
Fedorov et al., Few-Body Syst. P 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

V (r) = V0 exp

(

−
( r

R0

)2
)

+ V1 exp

(

−
(r − a

R1

)2
)

V0 = −55 MeV, V1 = 1.5 MeV, R0 =
√

5 fm, R1 = 10 fm, a = 5 fm
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V(r)

three spinless bosons with mass m = 939.0 MeV

two- and three-body bound states at −6.76 MeV and −37.22 MeV

three-body resonance at −5.31 − i0.12 MeV (Blandon et al.), −5.96 − i0.40 MeV (Fedorov et al.)

fit inflection point(s) to extract resonance energy ER = − .32(1) Me
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Three-body check

Take established three-body resonance from literature:
Fedorov et al., Few-Body Syst. P 33 153 (2003); Blandon et al., PRA 75 042508 (2007)
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three spinless bosons with mass m = 939.0 MeV

two- and three-body bound states at −6.76 MeV and −37.22 MeV

three-body resonance at −5.31 − i0.12 MeV (Blandon et al.), −5.96 − i0.40 MeV (Fedorov et al.)
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Three bosons with shifted Gaussian interaction

three-boson system

shifted Gaussian 2-body potential

note: no 2-body bound state!

add short-range 3-b dy force
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֒ possible to move three-b dy state spatially localized wf.
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Three bosons with shifted Gaussian interaction

three-boson system

shifted Gaussian 2-body potential

note: no 2-body bound state!

add short-range 3-body force 1 2 3 4 5
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→֒ possible to move three-body state ↔ spatially localized wf.
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Three fermions

Consider same shifted Gaussian potential for three fermions. . .

add spin d.o.f., but no spin dependence in potential
 total spin S good quantum number (fix Sz to determine)
also: can still consider simple cubic irreps.
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V0 = 2.0, a = 3.0, R = 1.5

all lowest states found to be in T−

1
irrep. (∼ P-wave state)

some remaining volume dependence (box not very large)

extracted S = 1/2 resonance energy: ER = 5.7(2)
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Four-boson resonance

Still same potential, look at four bosons. . .
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→֒ (supposedly) narrow resonance at ER = 7.31(8)
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Summary and outlook

! method established for up to four particles

! handle large NDVR for three-body systems (current record: 32)

! efficient symmetrization and antisymmetrization

! projection onto cubic irreps. (H → H + λ(1 − PΓ), λ large)

ork in progress

! chiral interactions (non-diagonal due to spin dependence!)

application to few-neutron systems

further optimization (especially for spin-dep. potentials)

֒ need to reach decent NDVR for four-neutron calculation!

isospin degrees of freedom treat general nuclear systems

different boundary conditions (e.g., antiperiodic)

Thank ou!
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Summary and outlook

! method established for up to four particles

! handle large NDVR for three-body systems (current record: 32)

! efficient symmetrization and antisymmetrization

! projection onto cubic irreps. (H → H + λ(1 − PΓ), λ large)

Work in progress

! chiral interactions (non-diagonal due to spin dependence!)

application to few-neutron systems

further optimization (especially for spin-dep. potentials)

→֒ need to reach decent NDVR for four-neutron calculation!

isospin degrees of freedom  treat general nuclear systems

different boundary conditions (e.g., antiperiodic)

*** Thank you! ***
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