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Basics of NCCI

Begin with single-particle Hilbert space spanned by orthonormal
single-particle basis {|α⟩}:

ĥ |nljm⟩ = ϵnljm |nljm⟩

This space has an (countably) infinite dimension; computationally,
we must truncate to a finite number of single-particle states.

Construct a many-body basis of Slater determinants with good M:

{|Ψα⟩} =

{
|πα1πα2 · · ·παZνα1να2 · · · ναN⟩

∣∣∣∣∣∑
i

mi = M
}
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Basics of NCCI – The Curse of Dimensionality
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Basis grows too fast keeping all possible Slater determinants, i.e.
Full Configuration Interaction (FCI).
→Can we eliminate some Slater determinants we don’t need?
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Nmax Truncation

All Slaters with a total number of oscillator quanta

N =
A∑

α=1
Nα ≤ N0 + Nmax

are included in the basis, where Nα is the oscillator quantum
number of the α− th particle, and N0 is the number of oscillator
quanta in the lowest configuration.

Nmax-truncation has been preferred traditionally because it allows
exact center-of-mass factorization, and can lead to faster
convergence with respect to basis size than FCI-truncation.
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NCCI Basis Size
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Many-body truncation

1. Assign each single-particle state a
weight wα (e.g. harmonic oscillator
quanta N = 2n+ ℓ) and sort orbitals
by that weight.

2. Assign a weight to the Slater
determinants by Wα =

∑
wαi .

3. Truncate based on weight of Slater
determinant Wα ≤ Wmax.
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Convergence of NCCI Calculations

By completeness, a calculation in the infinite space → independence
from parameters in the single-particle basis (i.e. ℏω).

Convergence is signalled by independence of the calculated value
from Nmax and b = (ℏc)/

√
(mNc2)(ℏω).
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Convergence of NCCI Calculations
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Convergence of NCCI Calculations
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Natural Orbitals for Nuclear Physics

• Attempt to formulate a “natural”
basis for performing NCCI
calculations.

• Observables should converge faster
in “natural” basis.

• Define “natural” → maximize
occupation of lowest orbitals

• Minimizing depletion of Fermi sea,
not minimizing energy!

• Built from many-body calculation, so
maybe “aware” of correlations.

rowe2010:collective-motion
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Natural Orbitals for Nuclear Physics

Natural orbitals are the eigenvectors of the one-body RDM
ραβ = ⟨α| ρ̂ |β⟩

One-Body Reduced Density Matrix (RDM)

ρ̂ =
∑
αβ

|α⟩ ⟨Ψ|a†αaβ |Ψ⟩ ⟨β|

ρ(x, x′) = A
∫

Ψ(x, x2, . . . , xA)Ψ∗(x′, x2, . . . , xA)dx2 · · · dxA

• Hermitian operator on the single-particle space;
• Depends on some reference many-body state |Ψ⟩;
• Contains all single-particle behavior in |Ψ⟩;
• Number operator expectation values on diagonal
ραα = ⟨α|Ψ|α⟩ = ⟨Ψ|Nα|Ψ⟩
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Natural Orbitals for Nuclear Physics

A change of basis on the single-
particle space:

• does not change the
single-particle space;

• does not change the FCI
many-body space;

• does change a truncated
many-body space.

We must sort our new natural or-
bitals by occupation.
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Natural Orbitals – Two examples

Four-state, two-orbital system: 0s1/2, 1s1/2

Eigenvector in initial basis:
|Ψ⟩ =

1
2
(
∣∣(0s↑)(0s↓)⟩︸ ︷︷ ︸

N=0

+
∣∣(0s↑)(1s↓)⟩− ∣∣(0s↓)(1s↑)⟩︸ ︷︷ ︸

N=2

+
∣∣(1s↑)(1s↓)⟩︸ ︷︷ ︸

N=4

)

Density matrix:

ρ =


1/2 0 1/2 0
0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2


Eigenvectors of ρ:∣∣∣0s′1/2⟩ =

1
√
2
∣∣0s1/2⟩− 1

√
2
∣∣1s1/2⟩∣∣∣1s′1/2⟩ =

1
√
2
∣∣0s1/2⟩+ 1

√
2
∣∣1s1/2⟩

Eigenvector in natural orbital basis:
|Ψ⟩ =

∣∣∣(0s′↑)(0s′↓)⟩

0s1/2

1s1/2
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Natural Orbitals for NCCI

How we use natural orbitals to accelerate convergence:

1. Perform an initial many-body NCCI calculation in an oscillator
basis.

2. Compute an approximate one-body reduced density matrix from
one of the many-body states.

3. Diagonalize the one-body reduced density matrix to obtain a
new basis.

4. Transform all input Hamiltonian matrix elements.
5. Diagonalize many-body Hamiltonian in new many-body basis.
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Results with Natural Orbitals
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Results with Natural Orbitals

oscillator

8

10
12
14

20

1.5

1.6

1.7

1.8

1.9

2.0

r
p
(f

m
)

5 10 15 20 25 30 35 40

ℏω (MeV)

Daejeon16
3He 1/21

+

natural orbitals

6

8

10
12
14

20

5 10 15 20 25 30 35 40

ℏω (MeV)

P. Fasano et al., in preparation

Natural orbitals for nuclear structure 19



Results with Natural Orbitals
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Results with Natural Orbitals

oscillator

2

4
6
8
10
1214

1.25

1.45

1.65

1.85

2.05

2.25

r
p
(f

m
)

5 10 15 20 25 30 35 40

ℏω (MeV)

Daejeon16
8He 01

+

natural orbitals

2

4
6
8
1012

5 10 15 20 25 30 35 40

ℏω (MeV)

Ch. Constantinou et al., in preparation

Natural orbitals for nuclear structure 21



Natural Orbitals – Decompositions

Natural orbitals decomposed into harmonic oscillator functions:

Ch. Constantinou et al., in preparation
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Natural Orbitals – Decompositions

Natural orbitals decomposed into harmonic oscillator functions:

Ch. Constantinou et al., in preparation
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Summary

• Goal: Try to solve the many-body problem starting with a
realistic NN (and 3N) interaction.

• Convergence assessed based on independence from
single-particle basis and many-body truncation.

• Picking better basis functions leads to better convergence!
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