Methods to deal with an effective pairing in the continuum: real and complex energy representations

Rodolfo M. Id Betan

Physics Institute of Rosario (CONICET), Argentina.

In collaboration with:

Carlos E. Repetto (CONICET, Argentina)

FRIB-Theory Alliance workshop
"From bound states to the continuum:
Connecting bound state calculations with scattering and reaction theory"

11-22 June 2018

Goal:

Study the many-body properties in open shell nuclei with Fermi level close to the continuum threshold or embedded in it

Outline

- About representation
 - Single particle representation
 - Single particle level density
 - Single particle complex energy
- Model interaction: pairing
- Model solutions
 - Richardson (Exact)
 - Bardeen-Cooper-Schrieffer (BCS)
 - Lipkin-Nogami (LN)
- **Applications:** open shell nuclei (constant pairing)

ABOUT RESONANCES

- Signature in box representation
- Signature in real energy representation
- Signature in complex energy representation
- Resonances as basis states

Signature of resonances in the box representation

 $\epsilon = 1.452 \text{-i } -0.225 \times 10^{-4} \text{ MeV}$

 ϵ =3.470-i 0.443 MeV

 $\epsilon = 9.019 \text{-i } 0.126 \ \text{MeV}$

 $\epsilon = 1.249 \text{-i } 2.030 \text{ MeV}$

Signature of resonances in the real energy representation

Signature of resonances in the complex energy representation

$$\varphi_{lj}(k,r) = \frac{i}{2}k^{-(l+1)}\left[f_{lj}(-k)f_{lj}(k,r) - (-)^l f_{lj}(k)f_{lj}(-k,r)\right] \qquad f_{lj}(\pm k,r \to \infty) \longrightarrow e^{\mp ikr} e^{\frac{\pi}{2}l}$$

$$S_{lj}(k) = \frac{f_{lj}(k)}{f_{lj}(-k)}$$
 $S_l^R(E) = e^{i2\delta_l^R(E)} = 1 - \frac{i\Gamma}{E - (E_R - i\Gamma/2)}$

Continuum states as basis expansion

T. Berggren, Nuclear Physics A 109, 265 (1968)

$$G_{lj}(k;r,r') = (-)^{l+1} k^{l} \frac{\varphi_{lj}(k,r_{<}) f_{lj}(-k,r_{>})}{f_{lj}(-k)}$$
Re(k)

$$\delta(r-r') = \sum_{n=n_b, n_a, n_d} u_n(r) \, u_n(r') + \int_L dk \, u(k,r) \, u(k,r')$$

$$f(r) = \int f(r') \, \delta(r - r') \, dr'$$

Im(k)

$$f(r) = \sum_{n=n_b, n_a, n_d} c_n u_n(r) + \int_L c(k) u(k, r) dk$$

MODEL INTERACTION For the Many-body calculation in open shells

- Single particle basis
- Model interaction: pairing
- Correlations between continuum states

How to Introduce the Single Particle Basis in Many-Body Calculations

$$H = \sum_{i=1}^{A} \left[-\frac{\hbar^2}{2m_i} \right] \nabla_{\boldsymbol{r}_i}^2 + \sum_{i< j=1}^{A} v(\boldsymbol{r}_i, \boldsymbol{r}_j)$$

$$H = \left\{ \sum_{i=1}^{A} \left[-\frac{\hbar^2}{2m_i} \right] \nabla_{\boldsymbol{r}_i}^2 + \sum_{i=1}^{A} \boldsymbol{v}(\boldsymbol{r}_i) \right\} + \left\{ \sum_{i< j=1}^{A} \boldsymbol{v}(\boldsymbol{r}_i, \boldsymbol{r}_j) - \sum_{i=1}^{A} \boldsymbol{v}(\boldsymbol{r}_i) \right\}$$

$$H = \sum_{i=1}^{A} h(\mathbf{r}_i) + V$$

$$h(\bar{r}) = -\frac{\hbar^2}{2\mu} \nabla^2 + v(r)$$

$$h(\mathbf{r})\phi_{\alpha}(\mathbf{r}) = \varepsilon_{\alpha}\phi_{\alpha}(\mathbf{r})$$

$$\delta(r - r') = \sum_{n_b, n_v, n_r} u_{nlj}(r) \ u_{nlj}(r') + \int_L dk \ u_{lj}(k, r) \ u_{lj}(k, r')$$

Computer Code: ANTI

L. Gr. Ixaru, M. Rizea, T. Vertse, Comp. Phys. Comm. 85, 217 (1995)

Model Interaction

$$H = \sum_{am_a} \varepsilon_a c_{am_a}^\dagger c_{am_a} + \sum_{JM} \sum_{b \leq a} \sum_{d \leq c} \langle ab, JM | V | cd, JM \rangle A_{JM}^\dagger (ab) A_{JM} (cd)$$

$$\langle cd, JM|V|ab, JM\rangle = -\frac{G}{2}\sqrt{(2j_c+1)(2j_a+1)}\delta_{J0}\delta_{cd}\delta_{ab}$$

Pairing Hamiltonian

$$H = \sum_{am_a} \varepsilon_a c_{am_a}^{\dagger} c_{am_a} - G P^{\dagger} P$$

$$P^\dagger = \sum_{am_a>0} c^\dagger_{am_a} c^\dagger_{aar{m}_a}$$

About the limitations of the pairing interaction

Classification of the Two Body Correlations

- Bound-Bound
- Bound-Continuum
- Continuum-Continuum

 $\langle cd, JM | V | ab, JM \rangle$

Classification of Continuum-Continuum Correlations

CONTINUUM

- Resonant-Resonant

 $\langle cd, JM | V | ab, JM \rangle$

- Resonant-Non Resonant

- Non Resonant-Non Resonant

CONSERVING PARTICLE NUMBER MODEL SOLUTION

Richardson

- Real energy representation
- Complex energy representation

Conserving particle number solution: Richardson

Richardson ansatz

$$|\Psi
angle = \prod_{i=1}^{N_{pair}} \left(\sum_a rac{P_a^\dagger}{2arepsilon_a - E_i}
ight) |0
angle$$

$$|N|\Psi
angle=(2N_{pair})|\Psi
angle$$

Pair creation operator

$$P_a^{\dagger} = \sum_{m_a>0} c_{am_a}^{\dagger} c_{aar{m}_a}^{\dagger}$$

Many-body eigenvalue

$$H|\Psi
angle=E\ket{\Psi}$$

$$E = \sum_{i=1}^{N_{pair}} E_i$$

Richardson equations

$$1 - \frac{G}{2} \sum_{a} \frac{2j_a + 1}{2\varepsilon_a - E_i} + 2G \sum_{j \neq i}^{N_{pair}} \frac{1}{E_j - E_i} = 0$$

Conserving particle number solution: Continuum spectrum

Single Particle Level Density Ansatz

$$h(r) u(k,r) = \epsilon u(k,r)$$

Conserving particle number solution: Continuum spectrum

$$\sum_{n} f_n \to \sum_{n_b} f = \sum_{n_b} (2j_{n_b} + 1) f_{n_b} + \int_{0}^{\infty} d\varepsilon \, g(\varepsilon) f(\varepsilon)$$

Richardson equations

Effective pairing in the continuum

$$1 - \frac{1}{2} \sum_{b} (2j_b + 1) \frac{G}{2\varepsilon_b - E_\alpha} - \frac{1}{2} \int_0^\infty d\varepsilon \; \frac{Gg(\varepsilon)}{2\varepsilon - E_\alpha} + 2G \sum_{\beta \neq \alpha} \frac{1}{E_\beta - E_\alpha} = 0$$

Compare with...

$$1 - \frac{G}{2} \sum_{a} \frac{2j_a + 1}{2\varepsilon_a - E_i} + 2G \sum_{j \neq i}^{N_{pair}} \frac{1}{E_j - E_i} = 0$$

$$g(\varepsilon) = \frac{1}{\pi} \sum_{lj} (2j+1) \frac{d\delta_{lj}}{d\varepsilon}$$

The level density contains the resonant and non resonant continuum

Conserving particle number solution Application: Carbon isotopes

Neutron level density in ¹²C

bound states: $0p_{1/2}$, $1s_{1/2}$, $0d_{5/2}$

$$G = \frac{10.9}{A} MeV$$

Spectrum of ¹⁴C

0.0 0

0.0

Calculated

Experimental

Conserving particle number solution Application: Carbon isotopes

Spectrum of 16C

10038	2+, 4+	(3)	10390
10050		(4 ⁺)-(4)	9420
7497	0+	3	7740
5703	2, 3	(2 ⁺ , 3 ⁻)	6109
4017	2+, 4+	3(+) 4+	4142 - 408
3274	2 ⁺ , 3 ⁺	2 (0+)	3027 398
3048	0+	2+	1766
0.0	0+	0+	0.0

Calculated

Experimental

Calculated

Calculated

Exp. (2+) 1.620 MeV

Conserving particle number solution in the complex energy plane

$$g(arepsilon) = g_{ extit{Res}}(arepsilon) + g_{ extit{Bckg}}(arepsilon)$$

Resonant density

$$g_{Res}(\varepsilon) = \sum_{r} \frac{2j_r + 1}{\pi} \frac{d\delta_r}{d\varepsilon} \cong \sum_{r} \frac{2j_r + 1}{\pi} \frac{\Gamma_r/2}{(\varepsilon - \epsilon_r)^2 + (\Gamma_r/2)^2}$$

Continuum part in the Richardson eq.

$$\int_0^\infty d\varepsilon \, \frac{g_{Res}(\varepsilon)}{2\varepsilon - E_k} \cong \sum_r \frac{2j_r + 1}{\pi} \left[\int_0^\infty \, \frac{d\varepsilon}{2\varepsilon - E_k} \frac{\Gamma_r/2}{(\varepsilon - \epsilon_r)^2 + (\Gamma_r/2)^2} \right]$$

Analytic deformation

Just to remember

$$1 - \frac{1}{2} \sum_{b} (2j_b + 1) \frac{G}{2\varepsilon_b - E_\alpha} - \frac{1}{2} \int_0^\infty d\varepsilon \, \frac{G g(\varepsilon)}{2\varepsilon - E_\alpha} + 2G \sum_{\beta \neq \alpha} \frac{1}{E_\beta - E_\alpha} = 0$$

Separation of resonant and non resonant contributions

Richardson equations in the complex energy plane

$$1 - \frac{G}{2} \sum_{b} \frac{2j_{b} + 1}{2\varepsilon_{b} - E_{k}} - \frac{G}{2} \sum_{r} \frac{2j_{r} + 1}{2\varepsilon_{r} - E_{k}} \qquad \text{with} \\ \varepsilon_{r} = \epsilon_{r} - \frac{\Gamma_{r}}{2}$$

$$- \frac{G}{2} \int_{0}^{\infty} g_{CxBckg}(\varepsilon) \frac{d\varepsilon}{2\varepsilon - iE_{k}} - \frac{G}{2} \int_{0}^{\infty} g_{Bckg}(\varepsilon) \frac{d\varepsilon}{2\varepsilon - E_{k}}$$

$$+ 2G \sum_{l \neq k} \frac{1}{E_{l} - E_{k}} = 0$$

$$(\text{we change } z = -i\varepsilon)$$

$$E = \sum_{i=1}^{N_{pair}} E_{i}$$

Before the extension into the complex plane

$$1 - \frac{G}{2} \sum_{b} \frac{(2j_{b} + 1)}{2\varepsilon_{b} - E_{\alpha}} - \frac{G}{2} \int_{0}^{\infty} d\varepsilon \, \frac{g(\varepsilon)}{2\varepsilon - E_{\alpha}} + 2G \sum_{\beta \neq \alpha} \frac{1}{E_{\beta} - E_{\alpha}} = 0$$

Going beyond the drip line

Drip line

Beyond drip line ²⁸C 16 neutrons

$$E = \sum_{i=1}^{N_{pair}} E_i$$

Assessment of the importance of the resonant and non resonant continuum

NON CONSERVING PARTICLE MODEL SOLUTION

Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN)

- Real energy representation

Non conserving particle number solutions: BCS and LN

BCS and LN ansatz

$$|BCS\rangle = \prod_{a,m_a>0} \left[u_a + (-1)^{a-m_a} v_a c_{am_a}^{\dagger} c_{a-m_a}^{\dagger} \right] |0\rangle$$

BCS Hamiltonian

$$H_{BCS} = H - \lambda N$$

LN Hamiltonian

$$H_{LN} = H - \lambda_1 N - \lambda_2 N^2$$

BCS and LN equations...

$$\frac{4}{G} = \sum_{n} \frac{1}{E_{n}} \qquad N = \sum_{n} v_{n}^{2}$$

$$\frac{4\lambda_{2}}{G} = \frac{\left(\sum_{n} u_{n}^{3} v_{n}\right) \left(\sum_{n} u_{n} v_{n}^{3}\right) - 2\sum_{n} (u_{n} v_{n})^{4}}{\left(\sum_{n} (u_{n} v_{n})^{2}\right)^{2} - 2\sum_{n} (u_{n} v_{n})^{4}}$$

...in the continuum

$$\sum_{n} f_{n} \to \sum_{n} f$$

$$= \sum_{n_{b}} (2j_{n_{b}} + 1) f_{n_{b}} + \int_{0}^{\infty} d\varepsilon g(\varepsilon) f(\varepsilon)$$

$$\langle BCS | H_{LN} \left(\hat{N}^2 - \langle BCS | \hat{N}^2 | BCS \rangle \right) | BCS \rangle = 0$$

Non conserving particle number solutions BCS and LN:

Aplication in real representation

Tin isotopes from A=102 to A=176

Single particle representation

Fig. 1. (Color online.) Evolution of the single particle energies in the core 100 Sn as a function of the number of the valence neutrons. The following labels $\circ g_{7/2}$, $\diamond d_{5/2}$, $\Box s_{1/2}$, $\triangle d_{3/2}$, $\triangleleft h_{11/2}$, $\nabla f_{7/2}$, $\triangleright p_{3/2}$, $+ p_{1/2}$, $*h_{9/2}$, A $f_{5/2}$ identify each single particle state.

BCS and LN in real representation

Tin isotopes from A=102 to A=176

Binding energy o BCS LN <u>—</u> Ехр 8 ▲ HF-BCS (Phys. At. Nucl. 76, 828 (2013)) B/A (MeV) 7 6,5 48 56 $\frac{B}{A} = \frac{B(^{100}\text{Sn}) - E_{\text{BCS/LN}}(N)}{50 + N}$

$$E_{\text{BCS/LN}}(N) = \sum_{n}^{\infty} v_n^2 \left(\varepsilon_n - \frac{G}{2} v_n^2 \right) - \frac{\Delta^2}{G} - \lambda_2 \sum_{n}^{\infty} 2 u_n^2 v_n^2$$

BCS and LN in real representation

Tin isotopes From proton drip line to neutron drip line

Drip line

Two-neutron separation energy

Discussion and Outlook

- PRO: fast/manageable dimensions
- CONS: losses of correlations
- Improvements (pairing):
 - Separable interaction
 - Effective interaction
 - Realistic interaction

Workflow for practitioners

Many-body Hamiltonian

Mean-field approximation

Single particle (s.p.) Hamiltonian

Discrete and continuum eigenfunctions (code ANTI)

Phase shift and s.p. densities

Effective interaction

Model solution

Occupation probabilities

Observables

THANKYOU FOR YOUR ATTENTION