
Nuclear  Level Density, 
Underlying Physics,

and
Constant Temperature Model

Vladimir  Zelevinsky
NSCL/FRIB  Michigan State University          

June 22, 2018



In collaboration with
Mihai Horoi
Sofia Karampagia
Roman Sen’kov
Antonio Renzaglia
Alex Berlaga

Work in progress



• “Constant temperature model” (CTM)
• Level density in shell model
• “ ” and related details
• Quantum chaos and level density
• Thermalization in a small mesoscopic system
• Back to CTM – ?
• Role of small “incoherent” matrix elements
• Random angular momentum coupling 
• CTM and “limiting temperature”
• Pairing and antipairing

of level density
• Projections to future



s, p, sd, pf - space 



CONSTANT  TEMPERATURE  PHENOMENOLOGY
LEVEL  DENSITY (E)  =  (const) exp (E/T)

Ericson  (1962)
Moretto (1975) – pairing phase transition
T – “effective constant temperature” 
1/T – rate of increase of level density



How  to find the level density 

Experimentally: direct counting (low E)
neutron resonances 
other resonance reactions  

Theoretically: Fermi-gas phenomenology
mean-field including pairing
energy density functionals
shell model diagonalization
Monte Carlo shell model 
statistical spectroscopy      





Quantum numbers

Partitions

Many-body dimension

Finite range
Gaussian

Centroids – first moment

Widths - second moment

Moments method No diagonalization required
Exact 
quantum 
numbers



Partition structure in the shell model

(a) All 3276 states ; (b) energy centroids

28Si

Diagonal
matrix elements
of the Hamiltonian
in the mean-field 
representation



Energy dispersion for individual states is nearly constant
(result of geometric chaoticity!)

Also in multiconfigurational method (hybrid of shell model and 
density functional)

28
Si

Widths add in quadratures





classification

Pure                        Total                 (N=0)

(N=1)

Recursive relation



INVISIBLE FINE STRUCTURE, or
catching the missing strength with poor resolution

Assumptions : Level spacing distribution  (Wigner)
Transition strength distribution  (Porter-Thomas)

Parameters: s=D/<D>,  I=(strength)/<strength>

Two ways of statistical analysis: <D(2+)>= 2.7 (0.9) keV and
3.1 (1.1) keV.

“Fairly sofisticated, time consuming and
finally successful analysis”

Shell-model
level density.

Moments method
(no diagonalization)









GROUND STATE ENERGY OF RANDOM MATRICES

EXPONENTIAL CONVERGENCE

SPECIFIC PROPERTY of RANDOM MATRICES ?

Banded  GOE Full GOE



REALISTIC 
SHELL             48 Cr
MODEL

Excited state
J=2, T=0

EXPONENTIAL
CONVERGENCE !

E(n) = E + exp(-an)
n ~ 4/N



REALISTIC
SHELL
MODEL

EXCITED STATES
51Sc

1/2-,      3/2-

Faster convergence:
E(n) = E + exp(-an)

a ~ 6/N



EXPONENTIAL
CONVERGENCE
OF SINGLE-PARTICLE
OCCUPANCIES

(first excited state J=0)
52

Cr

Orbitals f5/2 and f7/2



New method for
shell-model 
level density
/B.A. Brown, 2018/



CONVERGENCE REGIMES

Fast
convergence

Exponential
convergence

Power law

Divergence



s, p, sd, pf - space 



J = 0 – 7, positive parity  level density

S. Karampagia, V.Z.
Nucl. Phys. A962 (2017)



Level density for different 
classes of states in 28Si

Full agreement between
exact shell model 
and moments method

Problems: truncated orbital space,
only positive parity
in sd-model, …  

Generic shape
(Gaussian)



R.Sen’kov, V.Z.
PRC 93 (2016)





CLOSED MESOSCOPIC SYSTEM

at high level density

Two languages: individual wave functions
thermal excitation
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Answer depends on thermometer



CHAOS  versus  THERMALIZATION

L. BOLTZMANN – Stosszahlansatz = MOLECULAR CHAOS

N. BOHR - Compound nucleus = MANY-BODY CHAOS

N. S. KRYLOV - Foundations of statistical mechanics

L. Van HOVE – Quantum ergodicity

L. D. LANDAU and E. M. LIFSHITZ – “Statistical Physics”

Average over the equilibrium ensemble should coincide with 
the expectation value in a generic individual eigenstate of the
same energy – the results of measurements in a closed system
do not depend on exact microscopic conditions or phase
relationships if the eigenstates at the same energy have similar
macroscopic properties

TOOL: MANY-BODY QUANTUM CHAOS



From turbulent to laminar level dynamics

(shell model of 24Mg
as a typical example)

Fraction (%) of realistic strength

LEVEL DYNAMICS

Chaos due to particle interactions at high level density



Random matrix canonical ensembles – only as mathematical limit



Local density of states in
condensed matter physics



Temperature T(E)

T(s.p.) and T(inf) =
for individual states !



Occupation numbers in multicharged ions Au25+

(recombination as analog of neutron resonances in nuclei)

/G. Gribakin, A. Gribakina, V. Flambaum/

Average over individual states is
equivalent to a thermal ensemble 



EFFECTIVE TEMPERATURE of INDIVIDUAL STATES

From occupation numbers in the shell model solution (dots)
From thermodynamic entropy defined by level density (lines)

Gaussian level density

839  states  (28 Si) J=0

Microcanonical temperature 



J=0                 J=2               J=9

Single – particle occupation numbers

Thermodynamic behavior
identical in all symmetry classes

FERMI-LIQUID PICTURE

28 Sid5/2, d3/2, s1/2 



J=0

Artificially strong interaction (factor of 10)
Single-particle thermometer cannot resolve

spectral evolution



MEAN  FIELD  COMBINATORICS

S. Goriely et al. Phys. Rev. C 78, 064307 (2008)
C 79, 024612 (2009)

http://www.astro.ulb.ac.be/pmwiki/Brusslin/Level 

Hartree – Fock – Bogoliubov plus
Collective enhancement with certain phonons















M 2

“Spin cut-off” parameter

Markovian 
random process
of angular momentum
coupling





Space – only T=2,
Two-body interaction through T=1 channel 

4 valence neutrons 4 proton holes



Partition function = Trace{exp[-H/T(t-d)]} diverges at T > T(t-d) 

CONSTANT  TEMPERATURE  PHENOMENOLOGY

Level  density  (const) exp(E/T)



Cumulative level number
N(E) = exp(S),
Entropy S(E)= ln(N)
Thermodynamic temperature
T(t-d) = dS/dE = T[1 – exp(- E/T)]
Parameter T is limiting temperature
(Hagedorn temperature in particle physics)

Pairing phase transition? (Moretto)  - Chaotization

1/T – rate of increase of the level density  



Effective  temperature T

for (sd) – nuclei,

tabulated  for  all 

classes  of  spin

(ADNDT, 2018)





Eliminating pairing interaction

k(1) < 0 “antipairing”



Degenerate single-particle levels – smaller T (faster chaotization)



Sensitivity to the fit interval  



PAIR CORRELATOR

(b) Only pairing

(d) Non-pairing 
interactions

(f) All interactions



PAIRING
PHASE
TRANSITION

PAIR CORRELATOR as a THERMODYNAMIC FUNCTION



Strong interaction 4.0

Matrix elements
9-12:   pf  mixing,
16 :    quadrupole pair transfer,
20-24: quadrupole-quadrupole forces

in particle-hole channel = formation of the mean field

Large fluctuations of non-extensive nature (the same for 10 000 and 100 000 realizations)



24 Mg

Low-lying levels  
in absolute  (a)
and rotational (b)
units;

Ratio E(4)/E(2)   (c)

Transition rates (d)

V(1) = matrix elements of the two-body interaction 
with change of orbital momentum of one particle
by 2 units (the same parity) – way to deformation 



V(1) = matrix elements of the two-body interaction 
with change of orbital momentum of one particle
by 2 units (the same parity) – way to deformation 



Amplitudes of the ground 
state wave functions 
in terms of [J(p),J(n)] 



Number of  0+ levels up to 
energy 10 MeV



Quadrupole moment of  2+ state in 30P

as a function of the strength of

the mixing interaction strength 



Level density (0+) on two sides of deformation shape transition

/”collective enhancement”/



What next?

*  Tables for pf-shell – and further?
*   Comparison of phenomenological Fermi-liquid 

description with “Constant temperature” model 
*   New methods - Lanczos algorithm 

- hybrid methods
- random interactions

*   Mesoscopic applications (disordered solids)
*   Can we analytically derive CTM?
*   Computational progress
*   Continuum effects, width distribution, overlapping resonances
*   Application to reactions



GLOBAL PROBLEMS

1. New approach to many-body theory for  
mesoscopic systems –
instead of blunt diagonalization -
mean field out of chaos,
coherent modes plus 
thermalized chaotic background

2. Chaos-free scalable quantum computing 
(internal and external chaos)
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J=0 – 10 for 26 Al, 28 Al, 30 P (up to 10 MeV)

J=1/2 – 21/2 for 27 Al (up to 10 MeV)

J=0 – 10 for 50 Mn (up to 60 MeV)





Global comparison













H = k(1)V(1) + k(2)V(2)

V(1) – matrix elements of

single-particle transfer 



Level density (0+)
on two sides of 
deformation shape
transition

/”collective enhancement”/



No diagonalization required



****
Neutron resonances

****
Low-lying levels



Effective 
temperature for 
the level density
at low energy 
(up to 6 – 8 Mev)
Even-odd 
staggering
Clear minima in 
the vicinity of 
N=Z



U(1) = matrix elements of the two-body interaction 
with change of orbital momentum of one particle
by 2 units (the same parity) – way to deformation 



s + p + sd + pf shell space
WBT interaction, 
negative parity 

Exact shell model:       stair-dashed (with CM) and stair-solid (no CM)
Method of moments: straight-dashed (with CM) and straight-solid (no CM)
Dotted line:                   spurious states 

20  Ne




