Spectroscopy of Continuum States - a review for FRIBTA symposium: "Connecting Bound States to the Continuum" Ian Thompson Nuclear Data and Theory Group ### Which Continuum? - The continuum appears in several ways: - Part of expansion of bound states; - eg needed for weakly bound states - Dominated by <u>resonance</u>s; - These 'unbound states' identified eg with shell model eigenstates above threshold - In <u>non-resonant</u> continuum; - eg in breakup reactions, or low-energy capture. - Many <u>compound-nucleus</u> resonances to be averaged over; - e.g. neutron reactions with unresolved resonances - ALL important parts of nuclear structure!! # Probing the continuum: Structure overlaps → reaction dynamics - Reaction models need few-body degrees of freedom in structure models. - Solve a few-body model directly or - Extract few-particle degrees-of-freedom from microscopic model - Difficult for: GFMC, - for HFB, QRPA and RMF structure models - Do we transfer quasi-particles, or particles? ### **Measuring the Continuum?** | 1 | Ab-initio models | if Hamiltonian known. Sofia's talk. | |---|-----------------------|--| | | 7 to illicio liloacio | ii i iaiiiiicoiiiaii kiiovviii ooiia o taiki | | 2. | Average x-s for | pseudo-states | like Shell Model | |------------|-------------------|---------------|-------------------| | ~ . | / WCI USC A 3 IOI | pocado states | like Stiell Widae | | 3. | Lifetimes | / widths | measure times | / widths | |----|-----------|----------|---------------|----------| |----|-----------|----------|---------------|----------| | 4. Phase shifts 1 c | channel only | |---------------------|--------------| |---------------------|--------------| | 5. | S-matrix / | 'eigenvalues | multi-channe | |----|--------------|--------------|--------------| | J. | J IIIaciik / | CISCITATACS | THAIL CHAINC | | 6. | Resonances as complex poles | complex energy scattering | |----|-----------------------------|---------------------------| | Ο. | Nesonances as complex poles | complex energy scattering | | 7. | Inelastic / | transfer reactions | measure Q-value spreads | |----|-------------|--------------------|-------------------------| | | | | | | DWBA | |------| | | | 9. | Spectroscopic factors (?) | DWBA | |----|---------------------------|------| | ٥. | specificacións (.) | | | To Average cross sections for birds | 10. | Average cross-sections for bins | CDCC / XCDCC | |-------------------------------------|-----|---------------------------------|--------------| |-------------------------------------|-----|---------------------------------|--------------| | 11. Widths and partial widths | R-matrix theory | |-------------------------------|-----------------| |-------------------------------|-----------------| # **Continuum three-body wave functions** - Three-body scattering at energy E: hypermomentum $\kappa=\sqrt{k_x^2+k_y^2}=\sqrt{2mE/\hbar^2}$, hyperangle $\alpha_\kappa=\mathrm{atan}(k_x/k_y)$ - Plane wave 3-3 scattering states: $$(2\pi)^{-3} \exp[i(\mathbf{k}_{\mathbf{x}} \cdot \mathbf{x} + \mathbf{k}_{\mathbf{y}} \cdot \mathbf{y})]$$ $$= (\kappa \rho)^{-2} \sum_{KLM_L l_x l_y} i^K J_{K+2}(\kappa \rho) \mathcal{Y}_{KLM_L}^{l_x l_y}(\Omega_5^{\rho}) \mathcal{Y}_{KLM_L}^{l_x l_y}(\Omega_5^{\kappa})^*$$ Dynamical solutions for scattering states: $$\Psi_{\kappa JM}^{T}(\mathbf{x}, \mathbf{y}, \hat{\mathbf{k}}_{x}, \hat{\mathbf{k}}_{y}, \alpha_{\kappa}) = (\kappa \rho)^{-5/2} \sum_{K\gamma, K'\gamma'} \psi_{K\gamma, K'\gamma'}^{J}(\kappa \rho) \Upsilon_{JM}^{K\gamma}(\Omega_{5}^{\rho})$$ $$\sum_{M'_{L}M'_{S}} \langle L'M'_{L}S'M'_{S} \mid JM \rangle \mathcal{Y}_{K'L'M'_{L}}^{l'_{x}l'_{y}}(\Omega_{5}^{\kappa}) X_{T}$$ ### S-matrix and phases - 1-channel: e.g. $n + \alpha$ - phase shifts - Many-channel: e.g. $2n + \alpha$ - Diagonal phase shifts ? - Sometimes |Sii| is small! - Eigenphase shifts - Difficult to keep track of solutions ### Wave functions of ⁶He - Ground state wave function: - Solution of coupled equations for E ~ – 0.97 MeV. Nuclei such as ⁶He have highly correlated cluster structures # **Continuum Spatial Correlations** from B. Danilin, I. Thompson, PRC 69, 024609 (2004) • Now average scattering wave functions over angles of \mathbf{k}_x and \mathbf{k}_y , to see spatial correlations in continuum states in ^6He : ### 'True' 3-body resonances? Expect continuum wave functions like: $$\psi(\rho \ \Omega_5^{\rho}, E \ \Omega_5^{\kappa})$$ $$\propto \frac{1}{(\kappa \rho)^{5/2}} \sum_{K,\gamma} C_{K\gamma}(E) \ \psi_{K\gamma}^{R}(\rho) \ Y_{K\gamma}(\Omega_5^{\rho}) \ Y_{K\gamma}(\Omega_5^{\kappa})$$ with $$|C_{K\gamma}(E)|^2 = \frac{\Gamma_{K\gamma}}{(E - E_0)^2 + \Gamma^2/4}$$ ### Virtual states & Resonances ### from B. Danilin, I. Thompson, et al Virtual n-n pole Effect of n-n 'resonance' in E(c-n), E(cn-n) coordinates # **Continuum Energy Correlations** - Now average scattering wave functions over angles of \mathbf{k}_x and \mathbf{k}_y , for fixed three-body energy E. - Obtain similar plots for continuum energies. Continuum momentum & angular correlations also possible ### ⁶He excitations & resonances **Pronounced 2+ resonance** No pronounced 1-resonance ### What a good reaction theory needs: - Distinguish resonances and their backgrounds - Recoil & finite-range of projectile vertex. - Interference between exit partial waves - Nuclear and Coulomb mechanisms - Core excitation (static and/or dynamic) - Final-state interactions: - between projectile fragments (needed if resonances) between fragments and target (needed if close in) - Multistep Porocesses (higher order effects) ### **Elastic Breakup of 2N halo** - Elastic Breakup = <u>Diffraction Dissociation</u>: - —all nuclear fragments survive along with the target in its ground state, - —probes continuum excited states of nucleus. - Need correlations in the three-body continuum of Borromean nuclei. ### **Inelastic reactions** ¹¹Li(d,d') ¹¹Li* measurements (Kanungo et al, PRL **114**, 192502, 2015) #### See also: - ¹¹Li(p,p') ¹¹Li* measurements (Tanaka, et al, PLB 774, 268, 2017), - ⁶He(¹²C, ¹²C)⁶He(2⁺) measurements (Kikuchi, PRC 88, 021602R, 2013) FIG. 3: (a) Inelastic scattering excitation energy spectrum for deuterons in coincidence with ⁹Li. (b) The inelastic scattering angular distribution data for the resonance peak at E_{ex}=1.03 MeV. The curves are DWBA calculations for L=0 (pink dashed-line), L=1(red solid line), L=2(blue dotted line). ### **Transfer Reactions** Sanetullaev et al PLB **755**, 481 (2016) 5.7A MeV ¹¹Li beam, DWBA calculations Figure 4: The angular distribution data for ¹¹Li(p,d)¹⁰Li_{E_r=0.62MeV}. The curves show the DWBA calculations. The solid (red) curve / dashed (blue) curve / dotted (black) curve represents one neutron transfer from the 1p_{1/2} / 1d_{5/2} / 2s_{1/2} orbital. The inset shows the detection efficiency. Casal et al, PLB, 767, 307 (2017) Better: using structure overlaps from a full three-body model # Stripping Reactions 1-N from 3-body Borromean Nuclei - Removal of a neutron from ⁶He, ¹¹Li, ¹⁴Be, - —populates states of ⁵He, ¹⁰Li or ¹³Be. - —Experiments measure decay spectrum of 5 He = 4 He + n, 13 Be = 12 Be + n, etc - Can we predict any energy and angular correlations by Glauber model? - Can we relate these correlations to the structure of the A+1 or the A+2 nucleus? ### 1N stripping from ⁶He g.s. - Calculate overlaps: $<^5 \text{He}(E_{\alpha-n}) \mid ^6 \text{He}(gs) >$ for a range of $^5 \text{He}(E_{\alpha-n})$ bin states, - smooth histogram of Glauber bin cross sections. - GSI data (H.Simon) Theory: $\sigma_{\text{str}}=137 \text{ mb}$, $\sigma_{\text{diff}}=38 \text{ mb}$ Expt: $\sigma_{\text{str}}=127\pm14 \text{ mb}$, $\sigma_{\text{diff}}=30\pm5 \text{ mb}$ from T. Tarutina thesis (Surrey) # 1N stripping from ¹⁴Be g.s. - Calculate overlaps: $<^{13}$ Be($E_{\alpha-n}$) | $|^{14}$ Be(gs)> - Inert-core ^{13,14}Be wfs. - GSI data (H.Simon) - See softer data, and not pronounced virtual-s and resonant-d peaks. - New theory needed? Theory: $\sigma_{str}=109$ mb, $\sigma_{diff}=109$ mb Expt: $\sigma_{\text{str}}=125\pm19 \text{ mb}$, $\sigma_{\text{diff}}=55\pm19 \text{ mb}$ # Breakup reactions CDCC: Coupled Discretised Continuum Channels #### **Try CDCC:** - Proposed by Rawitscher, developed by Kamimura group. - Treat Coulomb and Nuclear mechanisms - Need to check convergence of long-range Coulomb process! - All higher-order effects with a (r,R,L) reaction volume - Can calculate fragment coincident angular distributions: - Predict e.g. $d^3\sigma/dE_1d\Omega_1d\Phi_{12}$ and fold with detector apertures & efficiencies - Extended by Neil Summers to XCDCC - · Include excited state of 'core' in the projectile subject to breakup - Summers et al, PLB 650, 124 (2007), Phys. Rev. C 74, 014606 (2006), 069901E (2014) - Extended by de Diego et al, to CDCC with target excitations - (de Diego etal. PRC 89, 064609, 2014) # CDCC Hamiltonian & model space The Hamiltonian for the reaction of a projectile on a target $$H = h_{proj} + h_{targ} + T_{\alpha} + V_{\alpha}$$ $$\Rightarrow h_{proj} = h_{core} + h_{frag} + T_{cf} + V_{cf}$$ $$\Rightarrow V_{\alpha} = V_{core-targ} + V_{frag-targ}$$ $$\psi_{JM}^{CDCC}(\mathbf{r},\mathbf{R}) = [\phi_{0}(\mathbf{r}) \otimes Y_{L}(\hat{\mathbf{R}})]_{JM} \chi_{0,L}^{J}(\mathbf{R}) + \sum_{I=0}^{Imax} \sum_{L} \sum_{i=1}^{N} [\phi_{i,I}(\mathbf{r}) \otimes Y_{L}(\hat{\mathbf{R}})]_{JM} \chi_{i,I,L}^{J}(\mathbf{R})$$ (neglect the internal structure of the target) ### **CDCC Formalism** Emax The CDCC basis consists of scattering wavefunctions averaged over an energy interval $$h_{\text{proj}}\phi_{k} = \varepsilon_{k}\phi_{k}$$ $$\phi_{i,l} = \sqrt{\frac{2}{\pi N_{i}}} \int_{k_{i-1}}^{k_{i}} w_{i}(k)\phi_{lm}(k,r)dk$$ $$\mathbf{N_{i}} = \int_{\mathbf{k_{i-1}}}^{\mathbf{I}} |\mathbf{w_{i}}(\mathbf{k})|^{2} d\mathbf{k}$$ $$\mathbf{N_{bins}} = \frac{\mathbf{k_{max}}}{\Delta \mathbf{k}}$$ Coupling potentials $$V_{il,i'l'}^{CDCC}(R) = <\phi_{il}(r) | V_{\alpha}(r,R) | \phi_{i'l'}(r) >$$ ### **Testing CDCC Convergence** Compare, in Adiabatic Few-Body Model, with Bremstrahlung integral Note the 'post-acceleration' Compare, in first-order PWBA model, with semiclassical theory # Adiabatic CDCC: compare with Exact 3-body model d+208Pb at 50 MeV, nuclear only Absolute errors in CDCC for d+208Pb at 50 MeV, Nuclear+Coulomb # ¹⁵C + ⁹Be breakup at 54 MeV/u FIG. 4. Diagrammatic representation of the CDCC model space calculation for 15 C. The left side shows the physical bound states and continuum and the right hand side the included continuum bins (10) in each $n + ^{14}$ C partial wave. The dashed arrows are representative of the one-way couplings included in the DWBA. The solid arrows show representative couplings for the full CDCC calculations which connect all bins, including diagonal bin couplings, with two-way couplings to all orders. Relative h waves were found to make negligible contributions. FIG. 11. The nucleon-removal parallel momentum distributions $d\sigma/dp_{\parallel}$, for the $^{15}\text{C}+^{9}\text{Be}$ reaction at 54 MeV/nucleon to the ^{14}C ground state, shown on a more familiar linear scale. The solid curves assume the stripping contributions have the same form as that calculated using the CDCC. The dashed curves assume the stripping contributions have a parallel momentum distribution at all angles of the residue given by the eikonal calculation shown in Fig. 2. Tostevin et al, PRC 66, 024607 (2002) # ¹¹Be + ¹²C breakup at 67 MeV/u **Angular distributions** of ¹¹Be* <u>left</u>: low-energy continuum right: region of d_{5/2} resonance CDCC calculations of Howell, Tostevin, Al-Khalili, J. Phys. G **31** (2005) S1881 # Energy excitation spectrum dashed line: multiplied by 0.8 #### Breakup reactions ### CDCC ${}^{8}B + {}^{58}Ni \rightarrow {}^{7}Be+p + {}^{58}Ni (E_{b}=26 \text{ MeV})$ ### ⁸B + ²⁰⁸Pb → ⁷Be parallel momentum distributions Dot-dashed: semiclassical Coul. Solid: Coulomb+nuclear DWBA Dashed: CDCC coupled channels - reduced asymmetry #### 44 MeV/u CDCC calculations with scaled E2 amplitudes - need to increase asymmetry again! from Mortimer et al., Phys Rev C 65 (2002) 64619