Theoretical Aspects of the Quantum Neutrino circa 2025+

Stephen Parke Fermilab

v_{1}

Theoretical Aspects of the Quantum Neutrino circa 2025+

Stephen Parke Fermilab

v_{1}

Neutrinos are Everywhere!

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3 2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

PSR J1836+5925 -

Sun

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$
SuperNovae $>10^{\wedge} 58$

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

SuperNovae $>10^{\wedge} 58$

O
Sun
October 30
October 30, 2008

Daya Bay
$3 \times 10^{\wedge} 21 \mathrm{nu} / \mathrm{sec}$

Neâtrinos are Forever !!!
(except for the highest energy neutrino's)

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

2 or mere $\mathrm{v} / \mathrm{c} \ll 1$

SuperNovae $>10^{\wedge} 58$

Daya Bay
Neâtrinos are Forever !!!
fomi
(except for the highest energy neutrino's)
therefore in the Universe:

Neutrino Flavor or Interaction States:

$$
W^{+} \rightarrow e^{+} \nu_{e}
$$

$$
W^{+} \rightarrow \mu^{+} \nu_{\mu}
$$

$$
\boldsymbol{W}^{+} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\nu}_{\boldsymbol{\tau}}
$$

ν_{e}

Neutrino Flavor or Interaction States:

$$
W^{+} \rightarrow e^{+} \nu_{e} \quad W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{+} \rightarrow \tau^{+} \nu_{\tau}
$$

$$
\text { provided } \boldsymbol{L} / \boldsymbol{E} \ll \mathbf{0 . 5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV} \text { !!! }
$$

~ 1 picosecond in Neutrino rest frame !!!

Neutrino Flavor or Interaction States:

$$
W^{+} \rightarrow e^{+} \nu_{e} \quad W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{+} \rightarrow \tau^{+} \nu_{\tau}
$$

$$
\text { provided } \boldsymbol{L} / \boldsymbol{E} \ll \mathbf{0 . 5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV} \text { !!! }
$$

~ 1 picosecond in Neutrino rest frame !!!

$$
\approx \text { Age of Universe / } \mathbf{1 0}^{26}
$$

Neutrino Mass EigenStates or Propagation States:

Neutrino Mass EigenStates or Propagation States:
States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Neutrino Mass EigenStates or Propagation
States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{\boldsymbol{j} \boldsymbol{k}} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Neutrino Mass EigenStates or Propagation States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Neutrino Mass EigenStates or Propagation States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Neutrino Mass EigenStates or Propagation States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

Interactions:

complicated

Interactions:

complicated

simple

Propagation:

Interactions:

Propagation:

Interactions:

masses?

Propagation:

unitary matrix

$$
\begin{gathered}
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{U}_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) \\
\text { by defn }\left|\boldsymbol{U}_{e 1}\right|^{2}>\left|\boldsymbol{U}_{e 2}\right|^{2}>\left|\boldsymbol{U}_{e 3}\right|^{2}
\end{gathered}
$$

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

by defn $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}$

$$
\begin{array}{r}
U_{P M N S} \quad=U_{23}\left(\theta_{23}, 0\right) U_{13}\left(\theta_{13}, \delta\right) U_{12}\left(\theta_{12}, 0\right) \\
=\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
-s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & s_{13} e^{-i \delta} \\
-s_{13} e^{+i \delta} & 1 & \\
s_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & 1
\end{array}\right) \\
\\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}
\end{array}
$$

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

by defn $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}$
$U_{P M N S}=U_{23}\left(\theta_{23}, 0\right) U_{13}\left(\theta_{13}, \delta\right) U_{12}\left(\theta_{12}, 0\right)$
Why this order ???

$$
\begin{gathered}
=\left(\begin{array}{ccc}
\mathbf{1} & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \boldsymbol{\delta}} \\
-s_{13} e^{+i \boldsymbol{\delta}} & \mathbf{1} & \boldsymbol{c}_{\mathbf{1 3}}
\end{array}\right)\left(\begin{array}{ccc}
\boldsymbol{c}_{\mathbf{1 2}} & s_{12} & \\
-s_{12} & c_{12} & \\
& & \mathbf{1}
\end{array}\right) \\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}
\end{gathered} \begin{gathered}
c_{13} c_{12}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}^{2}}{2}}\right) \\
\left(\begin{array}{ccc}
c_{13} c_{13} & s_{12} & s_{13} e^{-i \delta} \\
-c_{23} s_{12}-s_{13} s_{23} c_{12} e^{i \delta} & c_{23} c_{12}-s_{13} s_{23} s_{12} e^{i \delta} & c_{13} s_{23} \\
s_{23} s_{12}-s_{13} c_{23} c_{12} e^{i \delta} & -s_{23} c_{12}-s_{13} c_{23} s_{12} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
\end{gathered}
$$

$\nu_{1}, \quad \nu_{2}$ Mass Ordering:

-solar mass ordering

mass

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}\right|=\left|\boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{7 . 5} \times \mathbf{1 0}^{-\mathbf{5}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=\mathbf{1 5} \mathrm{km} / \mathrm{MeV}=\mathbf{1 5}, \mathbf{0} 00 \mathrm{~km} / \mathrm{GeV}$
(S)

$\nu_{1}, \quad \nu_{2}$ Mass Ordering:

-solar mass ordering

mass

$\left|\Delta \boldsymbol{m}_{\mathbf{2 1}}^{2}\right|=\left|\boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}-\boldsymbol{m}_{1}^{2}\right|=\mathbf{7 . 5} \times \mathbf{1 0}^{-\mathbf{5}} \mathrm{eV}^{2} \quad L / \boldsymbol{E}=15 \mathrm{~km} / \mathrm{MeV}=\mathbf{1 5}, 000 \mathrm{~km} / \mathrm{GeV}$

$$
\nu_{e}=
$$

$\nu_{3}, \quad \nu_{1} / \nu_{2}$ Mass Ordering:

-atmospheric mass ordering

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}\right|=\left|\boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 3}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=\mathbf{0} . \boldsymbol{5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV}$

$$
\nu_{e}=
$$

$$
\nu_{\mu}=>\quad \nu_{\tau}=
$$

$\nu_{3}, \quad \nu_{1} / \nu_{2}$ Mass Ordering:

-atmospheric mass ordering

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}\right|=\left|\boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 3}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=\mathbf{0} . \boldsymbol{5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV}$
Unknown: $\mathrm{NO} ~ \nu \mathrm{~A}$, JUNO, ICECUBE, DUNE, T2HKK....

$$
\nu_{e}=\square \quad \nu_{\mu}=\longrightarrow \quad \nu_{\tau}=
$$

Summary:

Octant of θ_{23}
$\sin ^{2} \theta_{23} \quad 0.40 \quad 0.50 \quad 0.60$
ν_{3}

0

δ
 $\pm \pi / 2$

$$
\begin{aligned}
& \nu_{e}= \\
& \nu_{\mu}= \\
& \nu_{\tau}=
\end{aligned}
$$

Summary:
Octant of θ_{23}
$\sin ^{2} \theta_{23} \quad 0.40 \quad 0.50 \quad 0.60$

0

$$
\begin{aligned}
& \nu_{e}=\square \\
& \nu_{\mu}=\square \boldsymbol{\pi} \\
& \nu_{\tau}=\square
\end{aligned}
$$

Summary:
Octant of θ_{23}

$$
\begin{array}{rlll}
\sin ^{2} \theta_{23} & 0.40 & 0.50 & 0.60 \\
\nu_{3} & & &
\end{array}
$$

0

Summary:
Octant of θ_{23}

$$
\begin{array}{rlll}
\sin ^{2} \theta_{23} & 0.40 & 0.50 & 0.60 \\
\nu_{3} & & &
\end{array}
$$

0

ν_{2} variation

Summary:
Octant of θ_{23}

$$
\begin{array}{cccc}
\sin ^{2} \theta_{23} & 0.40 & 0.50 & 0.60 \\
\nu_{3} & & &
\end{array}
$$

0

$\boldsymbol{\nu}_{2}$ variation

ν_{1} variation

Summary:
Octant of θ_{23}

$$
\begin{array}{rlll}
\sin ^{2} \theta_{23} & 0.40 & 0.50 & 0.60 \\
\nu_{3} & & &
\end{array}
$$

WHY?

Precision
 Neutrino Measurements:

WHY?

Precision
 Neutrino
 Measurements:

To discover neutrino BSM,
 one needs precision predictions for nuSM

Determine flavor
fractions of neutrino

WHY?

 mass states
Precision

Neutrino

Measurements:

To discover neutrino BSM,
 one needs precision predictions for nuSM

Rates: $\left|U_{\mu 1}\right|^{2} \&\left|V_{t d}\right|^{2}$

Leptons:

$$
\begin{aligned}
& 0.08<\left|U_{\mu 1}\right|^{2}<0.24 \\
& \text { variation in } \delta \text { only! }
\end{aligned}
$$

Leptons:

$0.08<\left|U_{\mu 1}\right|^{2}<0.24$
 variation in δ only !

factor of 3 diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

Leptons:

$0.08<\left|U_{\mu 1}\right|^{2}<0.24$
variation in δ only !

factor of 3 diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

Leptons:

$\left|V_{i j}\right|^{2}$ essentially independent of δ_{q} !

$0.08<\left|U_{\mu 1}\right|^{2}<0.24$
variation in δ only !

$$
\begin{gathered}
V_{t d} \approx A \lambda^{3}\left(1-0.37 e^{i \delta_{q}}\right) \\
\left|V_{t d}\right|^{2} \approx 10^{-4}
\end{gathered}
$$

factor of $\mathbf{3}$ diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

Leptons:

Quarks:

$0.08<\left|U_{\mu 1}\right|^{2}<0.24$
variation in δ only !
$\left|V_{i j}\right|^{2}$ essentially independent of δ_{q} !

$$
\begin{gathered}
V_{t d} \approx A \lambda^{3}\left(1-0.37 e^{i \delta_{q}}\right) \\
\left|V_{t d}\right|^{2} \approx 10^{-4}
\end{gathered}
$$

factor of 3 diff.

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\
\left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\
\left|U_{\mu 1}\right|^{2} & =0.08-0.24
\end{aligned}
$$

$$
\begin{aligned}
\left|V_{t b}\right|^{2} & \approx 1 \\
\left|V_{t s}\right|^{2} & \sim \lambda^{4} \approx 2 \times 10^{-3} \\
\delta_{q}>\left|V_{t d}\right|^{2} & \sim \lambda^{6} \approx 8 \times 10^{-5}
\end{aligned}
$$

$\delta \& \theta_{23}$ uncertainty

Bustamante, Beacom, Winter PRL 2015 [arXiv:1506.02645]
no θ_{23} uncertainty

Determine flavor fractions of neutrino mass states

Precision

Predictions for flavor ratios at ICECUBE.

Determine flavor
fractions of neutrino mass states

WHY?

Stress Test
Neutrino paradigm search for new physics

Stress Test
Neutrino paradigm search for new physics

Stress Test Neutrino paradigm search for new physics

Stress Test Neutrino paradigm search for new physics

Stress Test
Neutrino paradigm search for new physics

Stress Test
Neutrino paradigm search for new physics

9 out of 12 involve nu_tau !!!

Stress Test

 Neutrino paradigm search for new physicsDetermine flavor fractions of neutrino mass states

WHY?

Precision

Neutrino

Measurements:

Connection to

Leptogenesis
Understanding Universe

$\square \theta_{13}$
Δm_{21}^{2}

- Δm_{31}^{2}

Test Theoretical Neutrino Models

Girardi, Petcov, Titov, arXiv:|4I0.8056
Nucl. Phys. B, Vol. 894, 733-768 (2015)

Predictions of flavor symmetry forms with projected measurement precision

Girardi, Petcov, Titov, arXiv:I4I0.8056
Nucl. Phys. B, Vol. 894, 733-768 (2015)

Predictions of flavor symmetry forms with projected measurement precision

ARE THERE LIGHT STERILE

ARE THERE LIGHT STERILE

$$
U_{\mathrm{PMNS}}^{\text {Extended }}=\left(\begin{array}{cccc}
(\overbrace{U_{e 1}}^{U_{e 1}} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} \times 3 \mathrm{MNS} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{cc}
U_{e n} \\
\cdots & U_{\mu n} \\
\vdots & \vdots
\end{array}\right.
$$

ARE THERE LIGHT STERILE

$$
\begin{aligned}
& (\overbrace{U_{e 1}}^{U_{\text {PMNS }}} \quad U_{e 2} \quad U_{e 3}^{3 \times 3}) \cdots \quad U_{e n}) \quad \text { Cauchy-Schwartz } \\
& \left|\sum_{i=1}^{3} U_{e i} U_{\mu i}\right|^{2} \leq\left(1-\sum_{i=1}^{3}\left|U_{e i}\right|^{2}\right)\left(1-\sum_{i=1}^{3}\left|U_{\mu i}\right|^{2}\right) \\
& \text { - } \nu_{\mu} \text { Disappearance } \\
& \text { - } \nu_{\mu} \text { Disappearance }
\end{aligned}
$$

MINOS+, NOvA, T2K, atmospheric neutrinos (SK and ICECUBE)

ARE THERE LIGHT STERILE

MINOS+, NOvA, T2K, atmospheric neutrinos (SK and ICECUBE)

- ν_{e} Disappearance

Daya Bay, RENO, many $\sim 10 \mathrm{~m}$ Reactor experiments \& source experiments.

ARE THERE LIGHT STERILE

- ν_{μ} Disappearance
- ν_{μ} Disappearance

MINOS+, NOvA, T2K, atmospheric neutrinos (SK and ICECUBE)

- ν_{e} Disappearance

Daya Bay, RENO, many $\sim 10 m$ Reactor experiments \& source experiments.

- $\nu_{\mu} \rightarrow \nu_{e}$ Appearance

Fermilab SBN Program, T2K and NOvA: DUNE \& HyperK

CP violation ???

What about Nu_tau ???

Cosmology \& Neutrinos

Figure 1. Comparison between constraints on $\sum m_{\nu}$ from Planck 2013 (black) and Planck 2015 without (red) and with (blue) smallscale polarization. The baseline always includes the full TT spectrum and the low-ell polarization (taken from WMAP in 2013). The dashed line represents KATRIN sensitivity to the effective electron neutrino mass, translated in terms of $\sum m_{\nu}$.

$$
\begin{array}{ll}
N_{\mathrm{eff}}=3.13 \pm 0.32 & \text { PlanckTT }+ \text { lowP, } \\
N_{\mathrm{eff}}=3.15 \pm 0.23 & \text { PlanckTT }+ \text { lowP }+\mathrm{BAO}, \\
N_{\mathrm{eff}}=2.99 \pm 0.20 \quad \text { PlanckTT, TE }, \mathrm{EE}+\text { lowP, } \\
N_{\mathrm{eff}}=3.04 \pm 0.18 \quad \text { PlanckTT, TE, } \mathrm{EE}+\text { lowP }+\mathrm{BAO} . \tag{1d}
\end{array}
$$

Planck is consistent with the standard value of $N_{\text {eff }}$, and excludes $N_{\text {eff }}=4$ (i.e., a fullythermalized fourth neutrino state) at a level between 2.7 and 5.3σ; however, sizeable amounts

Reactor:

	Nominal	+ B2B (1\%)	+ BG	+ EL (1\%)	+ NL (1\%)
$\sin ^{2} \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^{2}	0.24%	0.27%	0.29%	0.44%	0.59%
$\left\|\Delta m_{e e}^{2}\right\|$	0.27%	0.31%	0.31%	0.35%	0.44%

Reactor:

	Nominal	+ B2B (1\%)	+ BG	+ EL (1\%)	+ NL (1\%)
$\sin ^{2} \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^{2}	0.24%	0.27%	0.29%	0.44%	0.59%
$\left\|\Delta m_{e e}^{2}\right\|$	0.27%	0.31%	0.31%	0.35%	0.44%

Neutrinoless Double Beta decay

Neutrinoless Double Beta decay

QCD \& Nuclear Physics:

- Reactor Flux and Spectrum
- Matrix elements for neutrinoless double beta decay
- Cross Sections for neutrino nucleon AND nucleus scattering

Recent highlights from neutrino theory

Pedro A. N. Machado

Fermilab soon to be at $\mathfrak{L A N} \mathcal{L}$ as junior staff member

Neutrinos as a portal to new Physics

ultra-light
warm
WIMP \longrightarrow Dark matter? \longrightarrow

- Natural seesaw -

Flavor puzzle
Leptogenesis

Many many many other fronts!

Neutrinos in cosmology
Early universe - BBN
Abazajian, Barbieri, Cirelli, Chizov, Di Bari, Dodelson, Dolgov, Foot, Holanda, locco, Kirilova, Kusenko, Mangano, Lesgourges, Pastor, Smirnov, Steigman, Volkas

Secret neutrino interactions

Dasgupta Kopp 2013, Chu Dasgupta Kopp 2015, Lundkvist Archidiacono Hannestad Tram 2016, Ghalsasi McKeen Nelson 2016, Archidiacono Gariazzo Giunti Hannestad Hansen
2016, Ghalsasi McKeen Nelson 2016, Archidiacono Gariazzo Giunti Hannestad Hansen
Laveder Tram 2016, Forastieri Lattanzi Mangano Mirizzi Natoli Saviano 2017

$$
\begin{aligned}
& \text { 2016, Ghalsasi McKeen Nesoratior Lram 2016, Forastieri Lattanzi Mangano Mirizzi Natoli Saviano } 2017 \\
& \text { Laveder }
\end{aligned}
$$

Sterile neutrino in long baseline oscillation experiments
Agarwalla, Bhattacharya, Chaterjee, Dasgupta, Dighe, Donini, Fuki, Klop, Lopez-Pavon, Meloni, Migliozzi, Palazzo, Ray, Tang, Terranova, Thalapillil, Wagner, Yasuda, Winter,...
Dark matter in neutrino detectors: light DM and light mediators
Ballett, Batell, Chen, Coloma, deNiverville, Dobrescu, Frugiuele, Harnik, McKeen, Pascoli, Pospelov, Ritz, Ross-Lonergan

Neutrinos and the standard solar model: CNO cycle and metallicity

Bailey, Busoni, Christensen-Dalsgaard, Krief, Simone, Serenelli, Scott, Vincent, Vilante, Vissani, Vynioli,
Supernova evolution: non-linear effects from collective oscillations

Friedland 2010, Cherry Carlson Friedland Fuller Vlaesnko 2012, Chakraborty Hansen Izaguirre Raffeelt 2016, Capozzi Basudeb Dasgupta 2016, Izaguirre Raffelt Tamborra 2016, Capozzi Dasgupta Lisi Marrone Mirizzi 2017 Chen Ratz Trautner 2015
Cosmic neutrino background: ideas to measure it? Non-thermal component?

Type II, type III and radiative seesaw
Akhmedov, Bonnet, Babu, Barbieri, Barger, Berezhiani, Ellis, Gaillard, Glashow, Hirsch, Keung, Ma, Mohapatra, Ota, Pakvasa, Schechter, Senjanovic, Valle, Yanagida, Winter, Wolfenstein, Zee, and many others

Neutrino magnetic moment

see e.g. Salam 1957, Barbieri Fiorentini 1988, Barbieri Mohapatra I989, Babu Chang Keung Phillips 1992, Tarazona Diaz Morales Castillo 2015 Cañas Miranda Parada Tortola Valle 20I5, Barranco Delepine Napsuciale Yebra 2017 Coloma Machado Martinez-Soler Shoemaker 2017

Discrete symmetries with

non-zero θ_{13}

Feruglio Hagedorn Toroop 2011, Lam 2012, Lam 2013, Holthausen Lim Lindner2012, Neder King Stuart 2013, Hagedorn Meroni Vitale 2013 King Neder 2014, Ishimori King Okada Tanimoto 2014, Yao Ding 2015, .
Effective operator approach to neutrino masses and collider/low scale pheno
de Gouvea Jenkins 2007, Boucenna Morisi Valle 2014, Nath Syed 2015, Geng Tsai Wang 2015, Chiang Huo 2015, Bhattacharya Wudka 2015, Geng Huang 2016, Quintero 2016, Mohapatra 2016, Kobach 2016 New physics in neutrinoless double beta decay, lepton number violation at the LHC, left-right models, RS models and neutrino masses, neutrinos as dark matter, and much more!

Flat extra dimensions: light sterile neutrinos
Antoniadis, Arkani-Hamed, Barbieri, Berryman, Davoudiasl, Dimopoulos, Dvali, de Gouvea, Langacker, Machado, Mohapatra, Nandi, Nunokawa, Perelstein, Peres, Perez-Lorenzana, Smirnov, Strumia, Tabrizi, Zukanovich-Funchal,

Circa 2025+

- from Nu1998 to now, tremendous exp. progress on Neutrino SM: more at Nu2018 and much more before 2025 ! - nu_3 mass ordering and dominant flavor, size CP violation phase.
- Unitarity ? 12 constraints, only 3 will be tested with reasonable precision !!! All with nu-tau poorly constrained except thru Cauchy-Schwartz.
- LSND Sterile Nu's neither confirmed or ruled out at acceptable CL: - CP violation? and role of Nu_tau?
- Neutrinoless Double beta decay will be probing below IO scale.

Circa 2025+

- Great Theoretical progress on understand many aspects of Quantum Neutrino Physics: - Oscillations, Decoherence, Osc. Probabilities in Matter, Leptogenesis,
- Convincing model of Neutrino masses and mixings: with testable and confirmed predictions !
- Connections to other sectors

Circa 2025+

- Great Theoretical progress on understand many aspects of Quantum Neutrino Physics: - Oscillations, Decoherence, Osc. Probabilities in Matter, Leptogenesis,
- Convincing model of Neutrino masses and mixings: with testable and confirmed predictions !
- Connections to other sectors

Surprises !!!

"And yet the nothing-particle is not a nothing at all." - Isaac Asimov 1966

