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Overview

* Supernova burst time and energy profiles.
* Finding individual neutrino interactions - clustering algorithm.

* Performance of a simple SN burst trigger - galactic coverage and fake
rate.

 DAQ requirements - time to record.



Strategy & Assumptions 3

Fast ‘back of the envelope’ approach to establish broad features of
DUNE'’s ability and DAQ requirements to capture neutrinos from a SN.

Many questions and assumptions still to be addressed.

DESIGNED TO BE MODULAR:

Astronomical Background and Hit finder/ Burst trigger
SN models. : : : :
models. noise models. hit clustering. design.
\

‘ 1 specific supernova -8 radiological backgrounds.
*Number of events expected. model used. -Are there more?
*Distribution of SN candidates - Hudepohl model. -Correct rates?

in the galactic neighbourhood. 11.2 sol “Whit )
-Simple minded addition of - I'l.2 SOlarmass e noise.
LMC to the distribution. progenitor. -Coherent noise?

« Effect of oscillations? *Not considered cosmics.



Distribution of Supernovae

Mirizzi, Raffelt & Serpico, astro-ph/0604300
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Define ‘galactic neighbourhood’
as Milky Way + LMC

We can reasonably consider issuing a burst trigger for SN in this
region.



Supernova Event Generator - MARLEY 5
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Radiological Backgrounds 6

Simulation contains white noise and radiological backgrounds.

In current simulations, backgrounds are dominated by radiologicals, not noise.

Require a better understanding of these backgrounds.

Source Notes

Ar39 Intrinsic to LAr

Ar42 Intrinsic to LAr

Co60 APA frame

Ur-238 in concrete

PO Simulates Rn daughters on PDs
K40 CPA frame

Kr85 LAr

Rn222 ntamination)

ISominant background

https://www.overleaf.com/13924050chkrxfmktthr#/53974837/ Of burSt trlgger'



Clustering Individual SN Neutrinos



Clustering Algorithm 3

Takes channel ordered hits from a hit finder (currently Gauss hit).

CLUSTER IN CHANNEL AND TIME SPACE
- Hits ordered sequentially by channel. Walk along the wires looking for hits on

channels.

« Within these channel cluster, group hits In time.
« Cut on ;
or :
* Finally require a certain In a cluster.
Channel
>
1 2 3 4 5 6 7 8 9 10
1 Require > 3
ol 27 y 3 X hits.
E| T
=l XX CLUSTER
;: NO CLUSTER
v 9—

https://indico.fnal.gov/event/16859/contribution/1/material/slides/0.pdf



Efficiency & Background Rates
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Input to burst trigger:

Different clustering algorithms allow the trade off between lower efficiency and
background rate to be explored.



Supernova Burst Trigger

Clustering efficiency &
SN / radiological / : : background acceptance Burst
i i . Hit-clustering . ) .
noise simulations different clustering trigger

confiqurations



SN Burst Trigger 1

Unique signatures of SN burst:
- Events spread out over a long time (exponential cooling of SN with 2-3

second decay time).

« Events typically higher energy than background.

Strategy: keep it very simple for now.
« Count the number of hit-clusters in a 10 second window.

* Trigger above a threshold number of hit-clusters.

Fake triggers:

« Use background rate from clustering algorithm, assume it fluctuates in
Gaussian way.

- Can map out burst-trigger rate as a function of threshold number of hit-
clusters.



Result: Galactic Neighbourhood Coverage 12

Assuming a fake burst trigger rate of 1/month,
what is our SN sensitivity vs. distance?

210 =
= Milky Way —
g —
& 102 \ —
z = Galaxy edge, harder
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Conclusion: can trigger on nearby SN easily.
However, capturing the 1/5 of SN coming from LMC requires more work and is more
dependent on our assumptions (e.g. hard to model neutron bkg).



Result: Fake Trigger Rate vs. Galactic 13
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Previous slide required 1/month fake trigger rate.
This slide shows trade off between efficiency and this rate.
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Galactic Neighbourhood Coverage

Trigger on 98% of SN in the neighbourhood,
issuing 1 fake trigger per month.



Time Profile Studies



Time Profile Studies 15

Time Since First Neutrino Passed Through Detector, (s)

- High datarate: 1.5TB/s/

_Closer SN, 10kt module

,longer time.

Extract maximal information.
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Establish DAQ requirements: Non-volatile buffer (read-out time).

Time profile studies potentially very sensitive to SN model.



Summary 16

Applied a fast ‘back of the envelope’ approach to establish broad features of
DUNE’s ability and DAQ requirements to capture neutrinos from a SN.

BURST TRIGGER:

- Reasonable to consider issuing a burst trigger for SN in the region of the Milky Way and
LMC.

* |In simulation shown that radiologicals are the dominant background.

- Demonstrated a simple burst trigger capable of catching 98% of supernovae in the
galactic neighbourhood, issuing on average 1 fake trigger 1/month.

TIME PROFILE STUDIES

- Shape of profile is model dependent, e.g. with/without oscillations.

- Studies influence DAQ requirements.

- Record all but 1 event of any galactic neighbourhood SN in ~28s.

Many questions and assumptions still to be ironed out.



Backup Slides



Analysis Details 18

GOAL: Understand supernova triggering efficiencies and corresponding background
rates for different levels of trigger.

- Using an amended version of the DAQSimAna (M. Baird, K. Warburton)
module in dunetpc (DAQSimAna/SNAnaClustering/SNAna_module.cc).

- Running on files produced at Christmas, SN+radiologicals+white noise.

* Non-compressed, ~750000 events each of 1 drift window and containing 1
MARLEY neutrino per event. Include Ar42. 1x6x2 geometry.

/pnfs/dune/scratch/dunepro/MCC10-Production/SuperNovaSamples/v06_60_00/reco/

snb_timedep_radio_dunel@kt_1x2x6

- Gauss hit finder to pick out hits. All collection plane. Save hit primitives
such as hit time, ADC sum of hit, hit RMS etc.

- Backtrack each of these hits to a generator - was it radiological/noise/
supernova.



Why not fast hit yet?

19

« Fast hit looks for time bins with ADC above a user defined ADC threshold. >2
bins above threshold, calls it a hit.
« Start time = first bin above threshold, end time = last bin above threshold.

Number of Hits
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Generator type 0 is ‘noise’.




Gauss Hit 20

e Finds pulses in each view above individually configured thresholds.
e ‘“Touching’ hits on a channel are merged up to a configurable max.
e Hits fit to a gaussian peak for:

» Start and end time.

» Peak time.

» Peak ADC.

 Total hit ADC is integral of raw data, not fit by default.

e Default generous max Chi/A2 for allowed hits.

Has a hard coded hit size minimum of 5 ticks.



SN Burst Trigger

Trigger rate = total background rate x
fraction of Gaussian above cut.

-
o

Trigger Rate, (Hz)
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Number of Clusters in Time Window Required to Trigger vs. Trigger Rate
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Background + Burst

Consider SN bursts of size 1->3x1075 events.

22

SN Burst Efficiency = ZPoisson(u = Mean background rate + Number of Events in Burst)
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Efficiency vs. Number of Events in SN Burst, Fake Trigger Rate: 1/Month

N = 267 clusters/month for

/ black curve.
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Burst -> Distance

SN Burst Efficiency vs. Number of Events in Burst (Unoscillated)
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Rule of thumb: l
~30 events at 30 kpc



Efficiency vs. Distance
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