Neutrino energy reconstruction in the DUNE far detector

Nick Grant, Tingjun Yang

Updates

THE UNIVERSITY OF WARWICK
I. Compare MicroBooNE (ref I) and ICARUS classical (ref 2) methods of estimating muon momentum using multi-Coulomb scattering (MCS).
2. Look at effect of track length on ICARUS MCS method.
3. Look at effect of reconstructed vertex position on reconstructed hadronic energy for $v_{\mu} C C$ events with exiting tracks.

References:
I. https://arxiv.org/abs/I703.06187
2. https://arxiv.org/pdf/hep-ex/0606006vl.pdf

Track momentum residuals

THE UNIVERSITY OF WARMGCK

True $v_{\mu} C C$ events with exiting track

ICARUS

MicroBooNE

Track momentum residuals

THE UNIVERSITY OF WARWICK

Track momentum residuals as function of true momentum using uncorrected MCS momentum

True $v_{\mu} C C$ events with exiting track

ICARUS

MicroBooNE

Comparison of methods

THE UNIVERSITY OF WARWICK

Divide track into segments and fit straight line to each segment. Measure angles between fits to successive segments and calculate RMS of these angles.

ICARUS

$$
\begin{array}{ll}
\theta_{0}^{r m s}=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{\frac{l}{X_{0}}}\left[1+0.038 \cdot \ln \left(\frac{l}{X_{0}}\right)\right] & \sigma_{o}^{\mathrm{HL}}=\frac{S_{2}}{p \beta c} z \sqrt{\frac{\ell}{X_{0}}}\left[1+\epsilon \times \ln \left(\frac{\ell}{X_{0}}\right)\right] \\
\left(\theta_{\text {meas }}^{r m s}\right)^{2}=\left(\theta_{0}^{\text {rms }}\right)^{2}+\left(\theta_{\text {noise }}^{r m s}\right)^{2} & \sigma_{o}=\sqrt{\left(\sigma_{o}^{\mathrm{HL}}\right)^{2}+\left(\sigma_{o}^{\mathrm{res}}\right)^{2}}
\end{array}
$$

Angular resolution $=$ const $\times 1^{-3 / 2}$

10 segment lengths $5-25 \mathrm{~cm}$ (track $<2.5 \mathrm{~m}$)
13 segment lengths $5-35 \mathrm{~cm}$ (track $>2.5 \mathrm{~m}$)

MicroBooNE

Angular resolution $=3 \mathrm{mrad}$ (MicroBooNE) = ? (DUNE)

Segment length $=X_{0}=14 \mathrm{~cm}$ (fixed)

As momentum increases, RMS scattering angle decreases. This means RMS angle becomes more comparable with angular resolution of detector, and measurement of RMS angle deteriorates. Only way to avoid this deterioration of measurement of RMS angle is to increase segment length I.

MicroBooNE method at low true momentum

THE UNIVERSITY OF MARMIC

MicroBooNE method works well at low true muon momentum

True $\nu_{\mu} C C$ events with exiting track
Include only tracks with true muon momentum $<1.5 \mathrm{GeV}$ in correction and residuals

Effect of vertex position and track length

THE UNIVERSITY OF WARWICK

ICARUS track momentum residuals

True ν_{μ} CC events with exiting track

Effect of track length
THE UNIVERSITY OF WARWICK

Longest reco track > 500 cm

Longest reco track < 500 cm

ICARUS track momentum resolution

True $\nu_{\mu} C C$ events with exiting track

All events

Effect of track length
THE UNIVERSITY OF WARWICK
Longest reco track > 500 cm

V_{μ} energy resolution using ICARUS MCS

True ν_{μ} CC events with exiting track

Longest reco track $<500 \mathrm{~cm}$

Hadronic energy residuals
THE UNIVERSITY OF WARWICK

z vertex of longest reco track
Hadronic energy residuals using ICARUS MCS against reco vertex position Note: these are residuals (reco-true), not fractional residuals.

When reco vertex near edge of detector, hadronic shower may not be contained (more vertices are near edge for exiting tracks than for contained tracks).

MicroBooNE method at low true momentum

THE UNIVERSITY OF WARWICK

Try making ad hoc tweak of uncorrected hadronic energy as function of reco z vertex position

Fractional residuals of hadronic energy have narrower width but are biased.

Don't use this ad hoc tweak.

Summary

THE UNIVERSITY OF WARwICK

The MicroBooNE method for MCS works well at low true muon momentum, but gives values that are too low at high momentum. For this reason, continue to use the ICARUS classical method for MCS.

The resolution of the ICARUS method improves significantly with increasing length of track within the detector.

The residuals of hadronic energy for $\nu_{\mu} C C$ events with exiting tracks suggest that the hadronic showers are not contained when the reco vertex is near the edge of the detector.

In the full-sized far detector, consider using a fiducial volume cut at least 500 cm before end in z.This will help energy resolution for $v_{\mu} C C$ events with exiting tracks, but it must be weighed against loss of statistics.

