Fermilab Laser Profile Monitors

Vic Scarpine
US – Japan Meeting on Laser Manipulation of H- Beams
March 28-29, 2018
Principle of Laser Profiles for H- Beams

Photoionization of H-

\[\text{H}^- + \gamma \rightarrow \text{H}^0 + \text{e}^- \]

Concept of a generic laser profile station

- \(\text{Cross section} \times 10^{-17} \text{ cm}^2 \)
- \(\lambda = 1064 \text{ nm} \)
- Inversely proportional to \(\beta \)
- Yield larger for low-energy beam

- \(3.5 \times 10^{-17} \text{ cm}^2 \) at 1.17 eV
Laser Projects for H- Beams

• Laser Transverse Profiling
 – End of Fermilab linac
 • 400 MeV H- (Dave Johnson et al)
 – PIP-II Injector Test
 • Low Energy (up to ~20 MeV) portion of PIP-II linac
 – PIP-II linac
 • Between SC cryomodules

• Laser Longitudinal Profiling
 – PIP-II Injector Test
 • MEBT, 2.1 MeV

• Laser Notcher – Dave Johnson talk
Typical Laser Profilers

1. Require high-power, low rep-rate lasers (Hz)
 a. Slow → stability issues
 b. Safety issues → high power lasers are dangerous
 i. Complicated laser light transport
 ii. Possible damage to optical vacuum windows
 c. Separate transverse and longitudinal systems

2. Signal detection through electron collection
 1. Measure profile by scanning laser across (space or time) bunch

SNS, Fermilab, BNL
Fermilab 400 MeV Configuration

Use pulsed Nd:YAG Q-switched laser, $\lambda = 1064$ nm
- 50 mJ, 10 ns pulses \rightarrow up to 92% neutralization
- Collect electrons \rightarrow make transverse profile
Cross section of the LPM

- Scan limits determined by size of laser dump viewport
 - +/- 33mm/264mm -> 125mr
 - +/- 7.16° optical (+/3.58° mechanical)
- Beam center -> +/-20 mm scan limits
- Mask at input viewport limits laser excursion to prevent launching laser up or downstream in vacuum chamber
- Cambridge Technology scanner
 - +/- 1 degree/volt -> input voltage of 3.58V
 - Repeatability 8 microradians
 - Galvonometers suffer from radiation damage – looking at alternatives

Viewport: AR coated 2.69" dia

Anodized laser dump w/PD
Electron magnet pole tips

Not to scale

3" beam pipe
Max angle +/- 6°
Anodized MASK

Mirror box
Optics Box
1 3/4 " beam pipe
Comparison of Multiwire and LPM

Multiwire Data taken
$1D 11$ turns $@ 4E12$

LPM profile
On 14 cycle (single bunch)
The PIP-II (Proton Improvement Plan II)

PIP-II is a proposed roadmap to upgrade existing proton accelerator complex at Fermilab. It is primarily based on construction of a 800 MeV superconducting linear accelerator that would be capable of operating in continuous wave (CW) mode.

PIP-II Linac High Level Performance Goals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>800 MeV</td>
</tr>
<tr>
<td>Beam Current (chopped)</td>
<td>2 mA</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>0.54 ms</td>
</tr>
<tr>
<td>Pulse Repetition Rate</td>
<td>20 Hz</td>
</tr>
<tr>
<td>Upgrade Potential</td>
<td>CW</td>
</tr>
</tbody>
</table>
PIP-II Injector Test (PIP2IT) Accelerator

PIP2IT will perform an integrated system test of the room temperature front-end and the first two cryomodules of the proposed PIP-II accelerator

Parameter	**Value**	**Unit**
Beam kinetic energy, Min/Max | 15/30 | MeV
Average beam power | ≤ 30 | kW
Nominal ion source and RFQ current | 5 | mA
Average beam current (averaged over > 1μs) | 1 | mA
Maximum bunch intensity | 1.9×10^8 |
Minimum bunch spacing | 6.2 | ns
Relative residual charge of removed bunches | < 10^{-4} |
Beam loss of pass-through bunches | < 5% |
Nominal transverse emittance* | < 0.25 | μm
Nominal longitudinal emittance* | < 1 | eV-μs

PIP2IT will address:
- LEBT pre-chopping
- CW 162.5 MHz, 2.1 MeV RFQ
- Validation of chopper performance
 - Bunch extinction, effective emittance growth
- MEBT beam absorber
 - Reliability and lifetime
- CW Operation
- Operation of HWR and SSR1 with beam
- Emittance preservation

30 keV RFQ

40 m, ~25 MeV
1. Use low-power, high rep-rate fiber mode-locked laser (MHz)
 a. Safe
 b. Combined transverse and longitudinal measurements
 c. High degree of synchronization to beam
 d. Amplitude modulated laser pulse for every beam bunch

2. Take advantage of signal detection via narrow-band synchronize detection
 a. Lock-in amplifier technique to decrease bandwidth and increase sensitivity by orders of magnitude
 a. Need long accelerator and laser pulses
 b. Detection of signals through BPMs → accelerators already have these
 a. Electron detection only for verification

Transverse and Longitudinal Laser Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10’s nJ per pulse</td>
<td>(~ 2W CW pulses)</td>
</tr>
<tr>
<td>~ 162.5 MHz rep rate</td>
<td>– phase locked to RF</td>
</tr>
<tr>
<td>~ 5-10 ps/pulse</td>
<td></td>
</tr>
<tr>
<td>Electro-optical modulation of pulse amplitudes</td>
<td>~ MHz’s</td>
</tr>
</tbody>
</table>
It’s all about signal to noise

• Can increase signal by more beam or more laser power
 ○ Laser power gets expensive → We’ll sample every bunch
• We’ll reduce coherent noise by selecting correct modulation freq
• We’ll reduce incoherent noise by narrow-band synchronize phase detection
• *Calculation show we can reach 1e-6 detection sensitivity*

SNS laserwire electron detection signal spectrum
Some Numbers

• 1056 nm photon energy = 1.88e-19 J = 1.17 eV
• \(E_{\text{laser}} \) (1W at 81 MHz) = 12.3 nJ per pulse
• \(N_{\text{phot}} \) = 6.5e10 photons/pulse
• \(\sigma_{cs}(1056 \text{ nm}) \sim 3.6e-17 \text{ cm}^2 \)
• \(N_{\text{part}} \) (5 mA @ 162.5 MHz) = 2e8 H- per bunch

Let \(\sigma(\text{bunch}) = 3 \text{ mm} \) and \(\sigma(\text{laser}) = 0.1\times \sigma(\text{bunch}) = 0.3 \text{ mm} \)

Then:

\[
N(\text{H- ion}) = \frac{\sigma_{cs}}{(2\times\pi\times\sigma_{\text{laser}}^2)} \times N_{\text{phot}} \times N_{\text{part overlap}}
\]

\(N(\text{H- ionization at center}) \sim 8000 \rightarrow 4e-5 \text{ reduction} \)
\(N(\text{H- at } 1\sigma) \sim 5000 \rightarrow 2.5e-5 \text{ reduction} \)
\(N(\text{H- at } 2\sigma) \sim 800 \rightarrow 4e-6 \text{ reduction} \)

Note: Laser to bunch shape matching may reduce these by \(\sim 50\% \)

So for 1 W laser we need \(\sim 1e-6 \text{ beam current modulation sensitivity} \)

Options: Can increase laser power and/or lower laser pulse rate
Laser rep-rate is locked to accelerator RF
- Amplitude modulate laser pulses
- Distribute modulated laser pulses via fibers
- Measure profiles by either:
 - Collection of electrons
 - Use BPM as reduced-beam pickup
 - Allows laser monitor to fit between cryomodules
- Narrow-band lock-in amp detects modulated signal

Prototype laser wire
- Single plane measurement – vertical profiles
- Goal to test laser profiling at PIP2IT
PIP2IT Goals

Primary Goal:
- Demonstrate both transverse and longitudinal profile measurements to a sensitivity of 1×10^{-6} using low-power laser through fiber distribution and synchronized detection

Secondary Goal:
- To understand any technology and systematic effects that would limit achieving primary goal
Vacuum Chamber Design

- Vacuum chamber welded
 - Installation in March?
 - Need vacuum windows
 - Ring pickup installed
- Single plane measurement only – vertical profiles
Optics

Optical design in progress

Optical Box

X-Y Tiltable Mirror - Manual
Defocusing Lens
Focusing Lens
Optical Fiber Collimator
Motorized Scanning Mirror
Optical Fiber

Diagnostics?
1 ¼” Optical Window
1 ¼” Beam Pipe
1 ¾” Optical Window
• Magnet design and simulation critical

MWS Model

B-field on axis

5 mA H-
2 mm rms

All Particles

3-sigma cut
Fiber Laser System

- Delivered from Pritel in December
- 2 W fiber laser
- < 12 psec rms
- Amplitude modulation
Laser Performance

- > 2 W power
- 11 ps rms
- Amplitude modulated pulses
Summary

• Fermilab utilizing lasers to study and manipulate H- beams
• LPM in 400 MeV linac demonstrated transverse profile measurements with high-power laser
 – Galvonometer scanning systems needs replacement
• LPM at PIP2IT will investigate transverse and longitudinal profiling with low-power laser
 – Working to take initial measurements later this summer
• In the era of superconducting linacs, lasers are becoming the primary profiling tool for high-intensity H- beams