

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Fermilab Laser Profile Monitors

Vic Scarpine US – Japan Meeting on Laser Manipulation of H- Beams March 28-29, 2018

Principle of Laser Profiles for H- Beams

3/29/2018

Laser Projects for H- Beams

- Laser Transverse Profiling
 - End of Fermilab linac
 - 400 MeV H- (Dave Johnson et al)
 - PIP-II Injector Test
 - Low Energy (up to ~20 MeV) portion of PIP-II linac
 - PIP-II linac
 - Between SC cryomodules
- Laser Longitudinal Profiling
 - PIP-II Injector Test
 - MEBT, 2.1 MeV
- Laser Notcher Dave Johnson talk

Typical Laser Profilers

1. Require high-power, low rep-rate lasers (Hz)

- a. Slow \rightarrow stability issues
- b. Safety issues → high power lasers are dangerous
 - i. Complicated laser light transport
 - ii. Possible damage to optical vacuum windows
- c. Separate transverse and longitudinal systems

2. Signal detection through electron collection

1. Measure profile by scanning laser across (space or time) bunch

SNS, Fermilab, BNL

Transverse Laser Parameters> 10's mJ per pulse~ 10's Hz~ 5-10 ns/pulse

Fermilab 400 MeV Configuration

Use pulsed Nd:YAG Q-switched laser, λ = 1064 nm

- 50 mJ, 10 ns pulses \rightarrow up to 92% neutralization
- Collect electrons \rightarrow make transverse profile

Linac installation

Cross section of the LPM

- Scan limits determined by size of laser dump viewport
 - +/- 33mm/264mm-> 125mr
 - +/- 7.16° optical (+/3.58° mechanical)
- Beam center -> +/-20 mm scan limits
- Mask at input viewport limits laser excursion to prevent launching laser up or downstream in vacuum chamber
- Cambridge Technology scanner
 - +/- 1 degree/volt -> input voltage of 3.58V
 - Repeatability 8 microradians
 - Galvonometers suffer from radiation damage – looking at alternatives

Comparison of Multiwire and LPM

Multiwire Data taken \$1D 11 turns @ 4E12

LPM profile On \$14 cycle (single bunch)

The PIP-II (Proton Improvement Plan II)

PIP-II is a proposed roadmap to upgrade existing proton accelerator complex at Fermilab. It is primarily based on construction of a 800 MeV superconducting linear accelerator that would be capable of operating in continuous wave (CW) mode.

PIP-II Linac High Level Performance Goals

Beam Energy	800 MeV
Beam Current (chopped)	2 mA
Pulse Length	0.54 ms
Pulse Repetition Rate	20 Hz
Upgrade Potential	CW

PIP-II Injector Test (PIP2IT) Accelerator

PIP2IT will perform an integrated system test of the room temperature front-end and the first two cryomodules of the proposed PIP-II accelerator

PIP2IT will address:

- LEBT pre-chopping
- CW 162.5 MHz, 2.1 MeV RFQ
- Validation of chopper performance
 - Bunch extinction, effective emittance growth
- MEBT beam absorber
 - Reliability and lifetime
- CW Operation
- Operation of HWR and SSR1 with beam
- Emittance preservation

Parameter	Value	Unit
Beam kinetic energy, Min/Max	15/30	MeV
Average beam power	≤ 30	kW
Nominal ion source and RFQ current	5	mA
Average beam current (averaged over $> 1 \mu s$)	1	mA
Maximum bunch intensity	1.9×10^{8}	
Minimum bunch spacing	6.2	ns
Relative residual charge of removed bunches	< 10-4	
Beam loss of pass-through bunches	< 5%	
Nominal transverse emittance*	< 0.25	μm
Nominal longitudinal emittance*	< 1	eV-µs

1. Use low-power, high rep-rate fiber mode-locked laser (MHz)

- a. Safe
- b. Combined transverse and longitudinal measurements
- c. High degree of synchronization to beam
- d. Amplitude modulated laser pulse for every beam bunch
- 2. Take advantage of signal detection via narrow-band synchronize detection
 - a. Lock-in amplifier technique to decrease bandwidth and increase sensitivity by orders of magnitude
 - a. Need long accelerator and laser pulses
 - b. Detection of signals through BPMs → accelerators already have these
 - a. Electron detection only for verification

PIP2IT Approach

Transverse and Longitudinal Laser Parameters

- > 10's nJ per pulse (~ 2W CW pulses)
- ~ 162.5 MHz rep rate phase locked to RF
- ~ 5-10 ps/pulse

Electro-optical modulation of pulse amplitudes ~ MHz's

It's all about signal to noise

- Can increase signal by more beam or more laser power
 ○ Laser power gets expensive → We'll sample every bunch
- We'll reduce coherent noise by selecting correct modulation freq
- We'll reduce incoherent noise by narrow-band synchronize phase detection
- <u>Calculation show we can reach</u> <u>1e-6 detection sensitivity</u>

SNS laserwire electron detection signal spectrum

Some Numbers

- 1056 nm photon energy = 1.88e-19 J = 1.17 eV 🗄
- E_{laser}(1W at 81 MHz) = 12.3 nJ per pulse
- N_{phot} = 6.5e10 photons/pulse
- $\sigma_{cs}(1056 \text{ nm}) \approx 3.6e-17 \text{ cm}^2$
- Npart(5 mA @ 162.5 MHz) = 2e8 H- per bunch

Supervision of the section of the se

Let $\sigma(\text{bunch}) = 3 \text{ mm}$ and $\sigma(\text{laser}) = 0.1^*\sigma(\text{bunch}) = 0.3 \text{mm}$ Then:

N(H- ion) = $\sigma_{cs}/(2^*\pi^*\sigma laser^2)^*Nphot^*Npartoverlap$

N(H- ionization at center) \sim 8000 \rightarrow 4e-5 reduction

N(H- at 1σ) ~ 5000 \rightarrow 2.5e-5 reduction

N(H- at 2σ) ~ 800 \rightarrow 4e-6 reduction

Note: Laser to bunch shape matching may reduce these by ~50%

So for 1 W laser we need ~1e-6 beam current modulation sensitivity

Options: Can increase laser power and/or lower laser pulse rate 3/29/2018 Vic Scarpine

R&D – Laser Diagnostics Development – Low-power transverse (and longitudinal) laser wire for PIP-II

- Laser rep-rate is locked to accelerator RF
- Amplitude modulate laser pulses
- Distribute modulated laser pulses via fibers
- Measure profiles by either:
 - Collection of electrons
 - Use BPM as reduced-beam pickup
 - Allows laser monitor to fit between cryomodules
- Narrow-band lock-in amp detects modulated signal
 Prototype laser wire
- Single plane measurement vertical profiles
- Goal to test laser profiling at PIP2IT

R. Wilcox, LBNL

PIP2IT Goals

Primary Goal:

 Demonstrate both transverse and longitudinal profile measurements to a sensitivity of 1e-6 using low-power laser through fiber distribution and synchronized detection
 Secondary Goal:

To understand any technology and systematic effects that would limit achieving primary goal

Vacuum Chamber Design

- Vacuum chamber welded
 - Installation in March?
 - Need vacuum windows
 - Ring pickup installed
- Single plane measurement only vertical profiles

Laserwire Magnet Field Modeling

Fiber Laser System

- **Delivered from Pritel** in December
- 2 W fiber laser
- < 12 psec rms
- Amplitude modulation

Laser Performance

PM-YbFA-33:Optical Spectra S/N:807-17-78, 11 ps, 162.5 MHz 5 0.48 W 1.12 W 0 2.21 W Input -5 -10 Signal -15 -10 -20 -25 -30 1050 1053 1054 1055 1056 1057 1051 1052 Wavelenght, nm

- > 2 W power
- 11 ps rms
- Amplitude modulated pulses

Summary

- Fermilab utilizing lasers to study and manipulate H- beams
- LPM in 400 MeV linac demonstrated transverse profile measurements with high-power laser
 - Galvonometer scanning systems needs replacement
- LPM at PIP2IT will investigate transverse and longitudinal profiling with low-power laser
 - Working to take initial measurements later this summer
- In the era of superconducting linacs, lasers are becoming the primary profiling tool for high-intensity H- beams

