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Introduction 
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• Detailed simulation has heavy computation requirements 

• Activities on-going to speedup Monte Carlo techniques

• Current code cannot cope with HL-LHC expected 
needs

• Improved, efficient and accurate fast simulation

• Currently available solutions are detector dependent

• A general fast simulation tool based on Deep Learning

• ML techniques are more and more performant in 
different HEP fields

Campana, CHEP 2016

ATLAS experiment:



Deep Learning for fast simulation

u Generic approach

u Can encapsulate expensive 
computations 

u DNN inference step is faster than 
algorithmic approach

u Industry building highly optimized 
software, hardware, and cloud services.

u Use generative models to sample ralistic
events from distributions  

u Interpret detector output as images 4



A DL engine for fast simulation

u Start with time consuming detectors

u Next generation highly granular 
calorimeters

u Train on detailed simulation

u Test training on real data

u Test different models

u GAN, RNN, MPNN

u Embed training-inference cycle in 
simulation
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Requirements

u A fast inference step: 
u It takes ~1 minute to simulate one electromagnetic shower with detailed 

simulation --> need at least a x100-1000 speedup 

u Precise simulation results:
u Need a detailed validation process

u Probably cannot go below single precision floating points

u Generic customizable tool 
u Easy-to-use and easily extensible framework

u Large hyper parameters scans and meta-optimisation of the algorithm:
u Training time under control

u Scalability

u Possibility to work across platforms
6



A plan in two steps
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Can image-processing approaches be useful? 

• Can we preserve accuracy while increasing 
speed? 

• Can we sustain the increase in detector 
complexity (future highly-granular 
calorimeters)? 

• A first proof of concept
• Understand performance 

and validate accuracy

• Prove generalisation is possible

• Understand and optimise
computing resources

How generic is this approach?
• Can we “adjust” architecture to fit a 

large class of detectors? 
What resources are needed?

Intel
Parallel 
Computing 
Center  
2017



Proof of concept, benchmarking  
and validation
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Generative Adversarial Networks

u Generator learns to generate 
data starting from random 
noise

u Discriminator learns how to 
distinguish real data from 
generated data

The counterfeiter/police case

u Counterfeiter shows police the fake money

u Police says it is fake and gives feedback 

u Counterfeiter makes new money based on feedback

u Iterate until police is fooled
9

arXiv:1406.2661v1 

Simultaneously train two networks that compete and cooperate 
with each other: 

GAN samples
for CIFAR-10



CLIC calorimeter simulation

u Electromagnetic calorimeter detector design(*) 

within the Linear Collider Detector studies
u Highly segmented array of absorber material 

and silicon sensors (ECAL)

u 1.5 m inner radius, 5 mm×5 mm 
segmentation: 25 tungsten absorber layers +  
silicon sensors

u 1M single particle samples (e,γ,π)

u Flat spectrum (10-500) GeV 

u Orthogonal to detector surface

u +/- 10° random incident angle (NEW!) 10

(*) http://cds.cern.ch/record/2254048#

10 Geant4 
shower 



CLIC calorimeter simulation

111125 2525

Data is essentially a 
3D image 

Stored as a 25x25x25 
HDF5 dataset

u Highly segmented

u Segmentation is critical for particle 
identification and energy calibration.

u Sparse.

u Non-linear location-dependency

XY XZ



3D convolutional GAN

u Similar discriminator and generator models

u 3d convolutions (keep X,Y symmetry) 
describe full shower development 

u Tested several tips&tricks from literature*

u Some helpful (no batch normalisation in 
the last step, LeakyRelu, no hidden dense 
layers, no pooling layers)

u RMSProp optmiser for both networks

u Batch training

u Implementation in keras (TF backend)

*https://github.com/soumith/ganhacks
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Conditioning and auxiliary tasks

u Condition training on several input variables 
(particle type, energy)

u Auxiliary regression tasks assigned to the 
discriminator: primary particle energy and 
deposited energy

u Loss is linear combination of 3 terms:

u Combined cross entropy (real/fake) 

u Mean absolute percentage error for 
regression tasks

Generalise to multi-class approach (or multi-discriminator approach): 
primary particle entry point, angle, etc..) 
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Validation and optimisation

u Detailed GAN vs GEANT4 comparison (More than 200 Plots! )
u High level quantities (shower shapes)

u Detailed calorimeter response (single cell response)

u Particle properties (primary particle energy)
u Optimisation on 

u Network Architecture (Layers, filters, kernels, initialisation) 

u Losses definition  

u Data pre-processing 

u Rely on GAN losses only !! No physics variable explicitly constrained!

u Results agree within a few % to Geant4 (labelled “DATA” in next slides J )
14

We run on Caltech ibanks GPU cluster thanks to Prof M. Spiropulu



Shower shapes
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250 GeV electron

X shape Y shape

Z shape
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Shower shape moments: width
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Central values are consistent
Stdev still slightly off

250 GeV electron



Shower shapes vs primary energy 
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Calorimeter sampling fraction 
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Low energy performance & single cells
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1 MeV

Several pre-processing 
optimisation steps improved 
performance at low energy

Number of hits (above 200 keV)

More details in G. Khattak talk at IML workshop
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Pions
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Deposited energy
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Computing resources
Time to create an electron shower

Method Machine Time/Shower
(msec)

Full Simulation 
(geant4)

Intel Xeon Platinum 
8180

17000

3d GAN
(batch size 128)

Intel Xeon 
Platinum 8180 7

3d GAN
(batchsize 128)

GeForce GTX 1080 0.04

3d GAN
(batchsize 128)

Intel i7 @2.8GHz 
(MacBookPro)

66

• Inference: using a trained model is very fast

• Orders of magnitude faster than detailed 
simulation (👍)

• Next step: test inference on FPGA and 
integrated accelerators

• Training time (30 epochs, 200k particles)

• 1d on an NVIDIA GTX-1080

• ~30 days  on Intel Xeon 8180 *

Time to train for 30 epochs

Method Machine Training time 
(days)

3d GAN
(batchsize 128)

Intel Xeon Platinum 
8180

(Intel optimised TF) 
30*

3d GAN
(batchsize 128)

GeForce GTX 1080 1

*TF1.4 (compiled for AVX2) + missing 3D convolution optimisation in Intel MKL-DNN



2018 Plan

Some work  on validation is still ongoing  at very low energy
Focus on generalisation and computing resources optimisation
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Generalisation

• Our baseline is an example of next generation highly granular 
detector

• Extend to other  similar calorimeters 

• FCC LAr calorimeter

• CALICE SDHCAL (testbeam data available!)

• Explore optimal network topology according to the problem to 
solve

• Hyper-parameters tuning and meta-optimization

• Sklearn/skopt, Spearmint, …

• Test genetic approach
25

SDHCAL prototype during SPS test beam



Parallel Training

u Implement data parallelism and study scaling on 
clusters

u Test data parallelism

u multiple tasks train the same model on different 
mini-batches of data, updating shared parameters 
hosted in one or more nodes

u Tested both Synchronous & Asyncronous training
u Asynchronous training: each replica has an 

independent training loop that executes without 
coordination.

u Synchronous training: all of the replicas read the 
same values for the current parameters, compute 
gradients in parallel, then apply them together.

Y

Start

Generate	Fake
Image	Batch

Train	Discriminator
on	real	images

Train	Discriminator
on	fake	images

Discriminator
Loss	is	average
of	both	losses

Train	generator
twice

Epoch<
num_epochs

GAN training is a 
multi-step process
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Synchronous approach

u Cray ML plugin to scale training  across multiple GPU and 
CPU nodes

u Optimal scaling through a large number of nodes

u Observed performance degradation at low energy

u Increase in “effective” batch size?

u Possibly compensate by increasing learning rate..

u Work in progress…

27

Collaboration with D. Moise , Cray inc.
Submitted to SuperComputing 2018



Asynchronous approach
u Modify mpi-learn library 

(https://github.com/duanders/mpi_learn)

u Elastic SGD

u Test on 20 GPU (Nvidia P100) at CSCS

u Good scaling 

u No performance degradation at low energy!

u Work in progress…
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Collaboration with J.R, Vlimant, Caltech.
Submitted to International SuperComputing 2018
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Summary

u Generative models seem natural candidates for fast simulation

u Rely on the possibility to interpret “events” as “images”

u Many studies ongoing in the different experiments: very 
promising results!

u 3d GAN is the initial step of a wider plan for an integrated 
configurable tool 

u First prototype achieves remarkable agreement with G4 
simulation
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Plan

u Prove we can generalise this network to other calorimeters

u Integration in HEP frameworks
u Extend research to different NN architectures and go beyond detector 

response simulation
u Computing  performance optimisation

u Efficient training is a priority 

u Different environments: cloud, HPC

u Big Data approach integration
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Thanks !
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Questions?



Computing resources

u All tests run with Intel optimised Tensorflow 1.4.1. + keras 2.1.2
u Compiled TF sources (-O3 –march=broadwell –config=mkl) (AVX2)*
u TF linked to MKL-DNN

u Use NCHW data format 
u OpenMP setup (for Skylake)

u KMP_BLOCKTIME = 1
u KMP_HW_SUBSET=1T
u OMP_NUM_THREADS=28 (physical cores )
u KMP_AFFINITY=balanced

u Systems:

u Intel Xeon Platinum 8180 @2.50 GHz (28 physical cores)

u NVIDIA GeForce GTX 1080
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* Currently AVX512 TF build is broken 
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More details in G. Khattak talk at IML workshop


