
3D convolutional GAN for fast
simulation
F. Carminati, G. Khattak, S. Vallecorsa

1

Outline

u Introduction
u Status

u Generative Adversarial Networks for calorimeter
simulation

u Physics performance validation
u Plan for 2018

u Generalisation
u Optimisation of computing resources

u Summary

2

Introduction

3

• Detailed simulation has heavy computation requirements

• Activities on-going to speedup Monte Carlo techniques

• Current code cannot cope with HL-LHC expected
needs

• Improved, efficient and accurate fast simulation

• Currently available solutions are detector dependent

• A general fast simulation tool based on Deep Learning

• ML techniques are more and more performant in
different HEP fields

Campana, CHEP 2016

ATLAS experiment:

Deep Learning for fast simulation

u Generic approach

u Can encapsulate expensive
computations

u DNN inference step is faster than
algorithmic approach

u Industry building highly optimized
software, hardware, and cloud services.

u Use generative models to sample ralistic
events from distributions

u Interpret detector output as images 4

A DL engine for fast simulation

u Start with time consuming detectors

u Next generation highly granular
calorimeters

u Train on detailed simulation

u Test training on real data

u Test different models

u GAN, RNN, MPNN

u Embed training-inference cycle in
simulation

5

Intel
Parallel
Computing
Center
2017

Requirements

u A fast inference step:
u It takes ~1 minute to simulate one electromagnetic shower with detailed

simulation --> need at least a x100-1000 speedup

u Precise simulation results:
u Need a detailed validation process

u Probably cannot go below single precision floating points

u Generic customizable tool
u Easy-to-use and easily extensible framework

u Large hyper parameters scans and meta-optimisation of the algorithm:
u Training time under control

u Scalability

u Possibility to work across platforms
6

A plan in two steps

7

Can image-processing approaches be useful?

• Can we preserve accuracy while increasing
speed?

• Can we sustain the increase in detector
complexity (future highly-granular
calorimeters)?

• A first proof of concept
• Understand performance

and validate accuracy

• Prove generalisation is possible

• Understand and optimise
computing resources

How generic is this approach?
• Can we “adjust” architecture to fit a

large class of detectors?
What resources are needed?

Intel
Parallel
Computing
Center
2017

Proof of concept, benchmarking
and validation

8

Generative Adversarial Networks

u Generator learns to generate
data starting from random
noise

u Discriminator learns how to
distinguish real data from
generated data

The counterfeiter/police case

u Counterfeiter shows police the fake money

u Police says it is fake and gives feedback

u Counterfeiter makes new money based on feedback

u Iterate until police is fooled
9

arXiv:1406.2661v1

Simultaneously train two networks that compete and cooperate
with each other:

GAN samples
for CIFAR-10

CLIC calorimeter simulation

u Electromagnetic calorimeter detector design(*)

within the Linear Collider Detector studies
u Highly segmented array of absorber material

and silicon sensors (ECAL)

u 1.5 m inner radius, 5 mm×5 mm
segmentation: 25 tungsten absorber layers +
silicon sensors

u 1M single particle samples (e,γ,π)

u Flat spectrum (10-500) GeV

u Orthogonal to detector surface

u +/- 10° random incident angle (NEW!) 10

(*) http://cds.cern.ch/record/2254048#

10 Geant4
shower

CLIC calorimeter simulation

111125 2525

Data is essentially a
3D image

Stored as a 25x25x25
HDF5 dataset

u Highly segmented

u Segmentation is critical for particle
identification and energy calibration.

u Sparse.

u Non-linear location-dependency

XY XZ

3D convolutional GAN

u Similar discriminator and generator models

u 3d convolutions (keep X,Y symmetry)
describe full shower development

u Tested several tips&tricks from literature*

u Some helpful (no batch normalisation in
the last step, LeakyRelu, no hidden dense
layers, no pooling layers)

u RMSProp optmiser for both networks

u Batch training

u Implementation in keras (TF backend)

*https://github.com/soumith/ganhacks

12

Conditioning and auxiliary tasks

u Condition training on several input variables
(particle type, energy)

u Auxiliary regression tasks assigned to the
discriminator: primary particle energy and
deposited energy

u Loss is linear combination of 3 terms:

u Combined cross entropy (real/fake)

u Mean absolute percentage error for
regression tasks

Generalise to multi-class approach (or multi-discriminator approach):
primary particle entry point, angle, etc..)

13

Validation and optimisation

u Detailed GAN vs GEANT4 comparison (More than 200 Plots!)
u High level quantities (shower shapes)

u Detailed calorimeter response (single cell response)

u Particle properties (primary particle energy)
u Optimisation on

u Network Architecture (Layers, filters, kernels, initialisation)

u Losses definition

u Data pre-processing

u Rely on GAN losses only !! No physics variable explicitly constrained!

u Results agree within a few % to Geant4 (labelled “DATA” in next slides J)
14

We run on Caltech ibanks GPU cluster thanks to Prof M. Spiropulu

Shower shapes

15

250 GeV electron

X shape Y shape

Z shape
X shape Y shape

Z shape

Shower shape moments: width

16

Central values are consistent
Stdev still slightly off

250 GeV electron

Shower shapes vs primary energy

17

50GeV

400GeV 500GeV

100GeV
50GeV

500GeV

Calorimeter sampling fraction

18

Total deposited energy

0 100 200 300 400 500
Ep GeV

0

0.005

0.01

0.015

0.02

0.025

0.03

Ec
al

/E
p

Ratio of Ecal and Ep

Data
GAN

DATA
Entries 10000
Mean 4.886
Std Dev 2.605

0 2 4 6 8 10 12
Ecal GeV

0

20

40

60

80

100

120

140

160

DATA
Entries 10000
Mean 4.886
Std Dev 2.605

GAN
Entries 10000
Mean 4.871
Std Dev 2.578

GAN
Entries 10000
Mean 4.871
Std Dev 2.578

Ecal Histogram for Uniform Spectrum
Data
GAN

Low energy performance & single cells

19

1 MeV

Several pre-processing
optimisation steps improved
performance at low energy

Number of hits (above 200 keV)

More details in G. Khattak talk at IML workshop

0 100 200 300 400 500
Ep GeV

0.2-

0.15-

0.1-

0.05-

0

0.05

0.1

0.15

0.2

Ep
 -

au
x/

Ep

Relative Error for Primary Energy

Data
GAN

Discriminator regression on input energy

20

5% error on
auxiliary energy
regression

DATA
Entries 10000
Mean 251.3
Std Dev 140.2

0 100 200 300 400 500 600
Primary GeV

0

20

40

60

80

100

120

140

DATA
Entries 10000
Mean 251.3
Std Dev 140.2

GAN
Entries 10000
Mean 250
Std Dev 138.6

GAN
Entries 10000
Mean 250
Std Dev 138.6

Auxilliary Energy Histogram for Uniform Spectrum

Data
GAN

Pions

21

GANx0
Entries 50000
Mean 12.06
Std Dev 1.628

0 5 10 15 20 250

1000

2000

3000

4000

5000

GANx0
Entries 50000
Mean 12.06
Std Dev 1.628

Datax0
Entries 50000
Mean 12.04
Std Dev 1.563

Datax0
Entries 50000
Mean 12.04
Std Dev 1.563

GANy0
Entries 50000
Mean 11.99
Std Dev 1.538

0 5 10 15 20 250

1000

2000

3000

4000

5000

6000

GANy0
Entries 50000
Mean 11.99
Std Dev 1.538

Datay0
Entries 50000
Mean 12
Std Dev 1.462

Datay0
Entries 50000
Mean 12
Std Dev 1.462

GANz0
Entries 50000
Mean 13.96
Std Dev 4.716

0 5 10 15 20 250

100

200

300

400

500

600

700

800
GANz0

Entries 50000
Mean 13.96
Std Dev 4.716

Dataz0
Entries 50000
Mean 13.98
Std Dev 4.658

Dataz0
Entries 50000
Mean 13.98
Std Dev 4.658

Data
GAN

GANx0
Entries 50000
Mean 12.06
Std Dev 1.628

0 5 10 15 20 25

10

210

310

410
GANx0

Entries 50000
Mean 12.06
Std Dev 1.628

Datax0
Entries 50000
Mean 12.04
Std Dev 1.563

Datax0
Entries 50000
Mean 12.04
Std Dev 1.563

GANy0
Entries 50000
Mean 11.99
Std Dev 1.538

0 5 10 15 20 25
1

10

210

310

410
GANy0

Entries 50000
Mean 11.99
Std Dev 1.538

Datay0
Entries 50000
Mean 12
Std Dev 1.462

Datay0
Entries 50000
Mean 12
Std Dev 1.462

GANz0
Entries 50000
Mean 13.96
Std Dev 4.716

0 5 10 15 20 25

10

210

310

GANz0
Entries 50000
Mean 13.96
Std Dev 4.716

Dataz0
Entries 50000
Mean 13.98
Std Dev 4.658

Dataz0
Entries 50000
Mean 13.98
Std Dev 4.658

Data
GANLog scale

X shape Y shape

Z shape
X shape Y shape

Z shape

10-500 GeV

Deposited energy

22

DATA
Entries 2000
Mean 1115
Std Dev 382.2

0 500 1000 1500 2000 2500 3000
Ecal GeV

0

20

40

60

80

100

120

DATA
Entries 2000
Mean 1115
Std Dev 382.2

GAN
Entries 2000
Mean 1153
Std Dev 422.3

GAN
Entries 2000
Mean 1153
Std Dev 422.3

Ecal Hits Histogram (above 0.01 GeV) for Uniform Spectrum

Data
GAN

0 100 200 300 400 500
Ep GeV

0

0.005

0.01

0.015

0.02

0.025

0.03

Ec
al

/E
p

Ratio of Ecal and Ep

Data
GAN

10-500 GeV -Pions

GAN seems to overestimate slightly
energy deposits

23

Computing resources
Time to create an electron shower

Method Machine Time/Shower
(msec)

Full Simulation
(geant4)

Intel Xeon Platinum
8180

17000

3d GAN
(batch size 128)

Intel Xeon
Platinum 8180 7

3d GAN
(batchsize 128)

GeForce GTX 1080 0.04

3d GAN
(batchsize 128)

Intel i7 @2.8GHz
(MacBookPro)

66

• Inference: using a trained model is very fast

• Orders of magnitude faster than detailed
simulation (👍)

• Next step: test inference on FPGA and
integrated accelerators

• Training time (30 epochs, 200k particles)

• 1d on an NVIDIA GTX-1080

• ~30 days on Intel Xeon 8180 *

Time to train for 30 epochs

Method Machine Training time
(days)

3d GAN
(batchsize 128)

Intel Xeon Platinum
8180

(Intel optimised TF)
30*

3d GAN
(batchsize 128)

GeForce GTX 1080 1

*TF1.4 (compiled for AVX2) + missing 3D convolution optimisation in Intel MKL-DNN

2018 Plan

Some work on validation is still ongoing at very low energy
Focus on generalisation and computing resources optimisation

24

Generalisation

• Our baseline is an example of next generation highly granular
detector

• Extend to other similar calorimeters

• FCC LAr calorimeter

• CALICE SDHCAL (testbeam data available!)

• Explore optimal network topology according to the problem to
solve

• Hyper-parameters tuning and meta-optimization

• Sklearn/skopt, Spearmint, …

• Test genetic approach
25

SDHCAL prototype during SPS test beam

Parallel Training

u Implement data parallelism and study scaling on
clusters

u Test data parallelism

u multiple tasks train the same model on different
mini-batches of data, updating shared parameters
hosted in one or more nodes

u Tested both Synchronous & Asyncronous training
u Asynchronous training: each replica has an

independent training loop that executes without
coordination.

u Synchronous training: all of the replicas read the
same values for the current parameters, compute
gradients in parallel, then apply them together.

Y

Start

Generate	Fake
Image	Batch

Train	Discriminator
on	real	images

Train	Discriminator
on	fake	images

Discriminator
Loss	is	average
of	both	losses

Train	generator
twice

Epoch<
num_epochs

GAN training is a
multi-step process

26

Synchronous approach

u Cray ML plugin to scale training across multiple GPU and
CPU nodes

u Optimal scaling through a large number of nodes

u Observed performance degradation at low energy

u Increase in “effective” batch size?

u Possibly compensate by increasing learning rate..

u Work in progress…

27

Collaboration with D. Moise , Cray inc.
Submitted to SuperComputing 2018

Asynchronous approach
u Modify mpi-learn library

(https://github.com/duanders/mpi_learn)

u Elastic SGD

u Test on 20 GPU (Nvidia P100) at CSCS

u Good scaling

u No performance degradation at low energy!

u Work in progress…

28

Collaboration with J.R, Vlimant, Caltech.
Submitted to International SuperComputing 2018

0 50 100 150 200 250 300 350 400 450 500
Ep

0

0.005

0.01

0.015

0.02

0.025

0.03

Ec
al

/E
p Data

1 gpu
5 gpus
10 gpus
15 gpus

Ratio of Ecal and Ep
Data
1 gpu
5 gpus
10 gpus
15 gpus

Data
1 gpu
5 gpus
10 gpus
15 gpus

Data
1 gpu
5 gpus
10 gpus
15 gpus

Picture from
https://github.com/duanders/mpi_learn

Summary

u Generative models seem natural candidates for fast simulation

u Rely on the possibility to interpret “events” as “images”

u Many studies ongoing in the different experiments: very
promising results!

u 3d GAN is the initial step of a wider plan for an integrated
configurable tool

u First prototype achieves remarkable agreement with G4
simulation

29

Plan

u Prove we can generalise this network to other calorimeters

u Integration in HEP frameworks
u Extend research to different NN architectures and go beyond detector

response simulation
u Computing performance optimisation

u Efficient training is a priority

u Different environments: cloud, HPC

u Big Data approach integration

30

Thanks !

31

Questions?

Computing resources

u All tests run with Intel optimised Tensorflow 1.4.1. + keras 2.1.2
u Compiled TF sources (-O3 –march=broadwell –config=mkl) (AVX2)*
u TF linked to MKL-DNN

u Use NCHW data format
u OpenMP setup (for Skylake)

u KMP_BLOCKTIME = 1
u KMP_HW_SUBSET=1T
u OMP_NUM_THREADS=28 (physical cores)
u KMP_AFFINITY=balanced

u Systems:

u Intel Xeon Platinum 8180 @2.50 GHz (28 physical cores)

u NVIDIA GeForce GTX 1080

32

* Currently AVX512 TF build is broken

33

More details in G. Khattak talk at IML workshop

