https://github.com/hep-lbdl (code + data)

Luke de Oliveira, <u>Benjamin Nachman</u>, Michela Paganini

Joint WLCG and HSF Workshop, Napoli, March 27, 2018

For more details: Phys. Rev. Lett. 120, 042003 (2018), 1705.02355 Phys. Rev. D 97, 014021 (2018), 1712.10321 Comput Softw. Big Sci. (2017) 1: 4, 1701.05927

See also related work by <u>S. Vallecorsa et al. (GeantV)</u>, <u>C. Guthrie et al. (NYU)</u>, <u>W. Wei et al. (LCD dataset group)</u>, <u>D. Salamani et al. (Geneva)</u>, <u>D. Rousseau et al. (Orsay)</u>

Simulation at the LHC

10000000000 m leeeeeeeeeee and a contract and a mmmmm mmm Recence Spanning 10⁻²⁰ m up to 1 m Inspired by Sherpa 1.1 can take O(min/event) paper - can you spot the differences?

State-of-the-art for material interactions is Geant 4.

3

Includes electromagnetic and hadronic physics with a variety of lists for increasing/decreasing accuracy (at the cost of time)

This accounts for O(1) fraction of all HEP computing resources!

Digitization

It is important to mention that **after** Geant4, each experiment has custom code for *digitization*

this can also be slow; but is usually faster than G4 and reconstruction

Part IV: Digitization

deposited charge It is important to mention that **after** Geant4, each experiment has custom code for *digitization*

N.B. calorimeter energy deposits factorize (sum of the deposits is the deposit of the sum) but digitization (w/ noise) does not!

Goal: replace (or augment) simulation steps with a faster, powerful generator based on state-of-the-art machine learning techniques

This work: attack the most important part: Calorimeter Simulation

First step: instead of studying the detailed structure of calorimeter showers, we consider **Jet images**

And now: Modern Deep NN's for Generation 8

Generative Adversarial Networks (GAN):

A two-network game where one maps noise to images and one classifies images as fake or real.

Locally Connected Layers

Due to the structure of the problem, we do not have translation invariance.

Classification studies found fully connected networks outperformed CNNs

9

Locally Connected Layers

Locally Aware GAN (LAGAN)

Unlike `natural images', we have physically meaningful 1D manifolds (here, jet mass)

+ More Layers for Generation

What about **multiple layers** with **non-uniform granularity** and a **causal relationship**?

φ Cell ID

Not jet images per se, but the technology is more general than jets!

Calorimeter Simulation

Geant4, Pb Absorber, IAr Gap, 10 GeV e

We take as our model a 3layer LAr calorimeter, inspired by the ATLAS barrel EM calorimeter

A single event may have O(10³) of particles showering in the calorimeter - too cumbersome to do all at once (now)

We exploit factorization of energy depositions

Generator Network for CaloGAN

Discriminator Network for CaloGAN

15

Average Images

Geant4

CaloGAN

"Overtraining"

A key challenge in training GANs is the diversity of generated images. This does not seem to be a problem for CaloGAN.

Energy per layer

Shower Energy

1711.08813 (ACAT 2017 proceedings) 20

Fix noise, scan latent variable corresponding to energy

Timing

Fix noise, scan latent variable corresponding to x-position

Timing

Generation Method	Hardware	Batch Size	milliseconds/shower
GEANT4	CPU	N/A	1772 -
CALOGAN	CPU Intel Xeon E5-2670	1	13.1
		10	5.11
		128	2.19
		1024	2.03
		1	14.5
		4	3.68
	GPU	128	0.021
	NVIDIA K80	512	0.014
		1024	0.012

(clearly these numbers will change as both technologies improve - this is simply meant to be qualitative and motivating!)

Neural-network generation is a systematically improvable path toward a high(er) fidelity simulator.

Implementing these tools in an experimental workflow is a key challenge but a lot of active R&D efforts ongoing!

Depth of the shower

Lateral spread

 10^{-5}

10⁻⁶

 10^{0}

101

 σ_2

 10^{2}

These moments and others are useful for classification; we have also tested this as a metric (NN on 3D images) 25