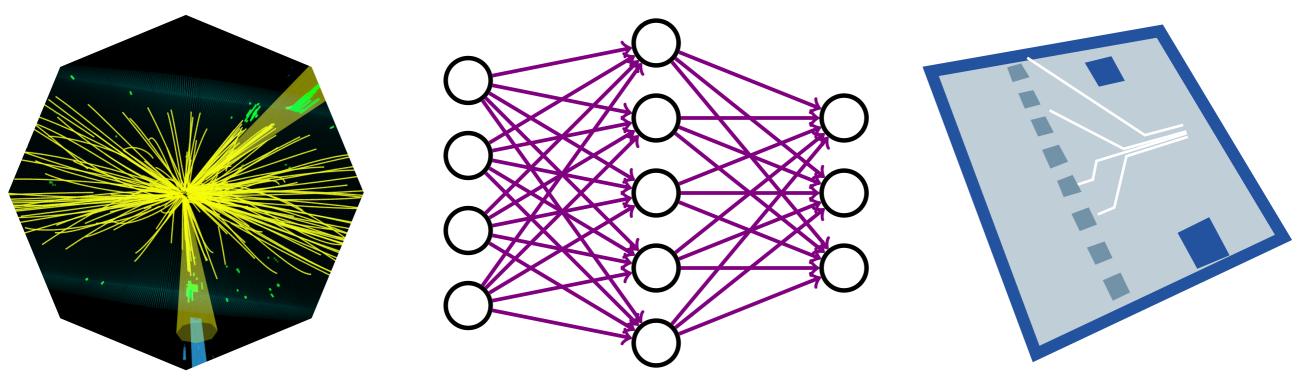
Fast Inference of Deep Neural Networks in FPGAs for Particle Physics (arXiv:1804.06913)



Jennifer Ngadiuba, Maurizio Pierini [CERN] Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran [Fermilab] Edward Kreinar [Hawkeye 360] Song Han, Phil Harris [MIT] Zhenbin Wu [University of Illinois at Chicago]

Research Techniques Seminar Fermilab 4/24/2018

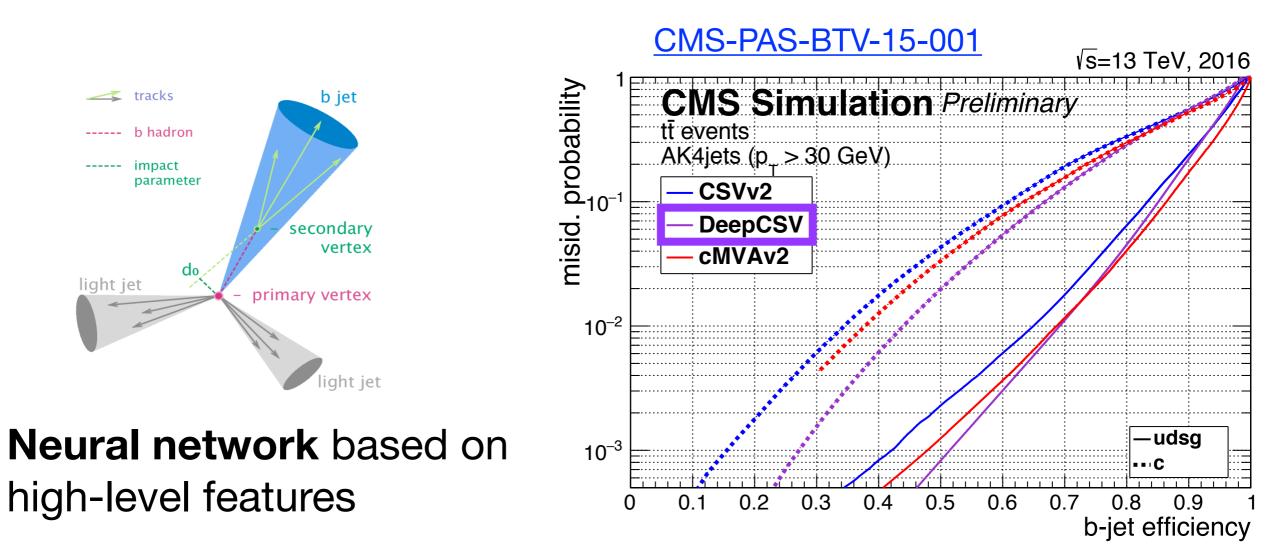
Outline

- Introduction and Motivation
 - Machine Learning in HEP
 - FPGAs and High-Level Synthesis (HLS)
 - Industry Trends
- HEP Latency Landscape
 - hls4ml: HLS for Machine Learning
- Case Study and Design Exploration
- Summary and Outlook
 - Cloud-scale Acceleration

Introduction

Machine Learning in HEP

- Learning optimized nonlinear functions of many inputs for performing difficult tasks from (real or simulated) data
- Many successes in HEP: identification of b-quark jets, Higgs candidates, particle energy regression, analysis selection, ...



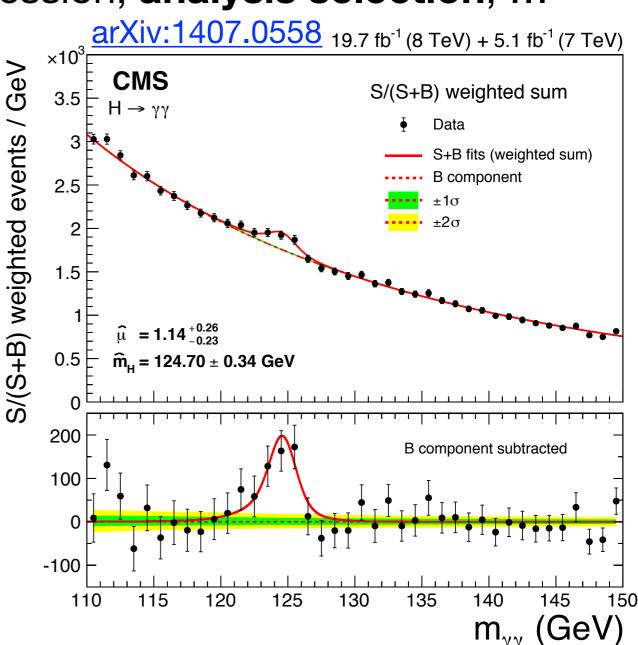
Machine Learning in HEP

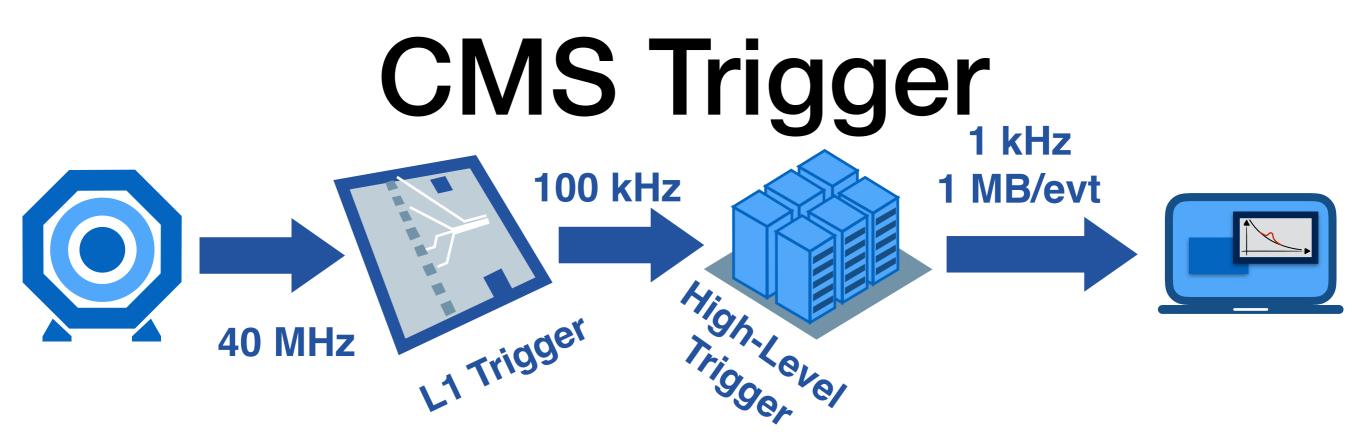
- Learning optimized nonlinear functions of many inputs for performing difficult tasks from (real or simulated) data
- Many successes in HEP: identification of b-quark jets, Higgs candidates, particle energy regression, analysis selection, ...

5

ML algorithms used in every aspect of Higgs discovery: energy regression S/B discrimination,

Typically applied offline, not online (trigger-level)



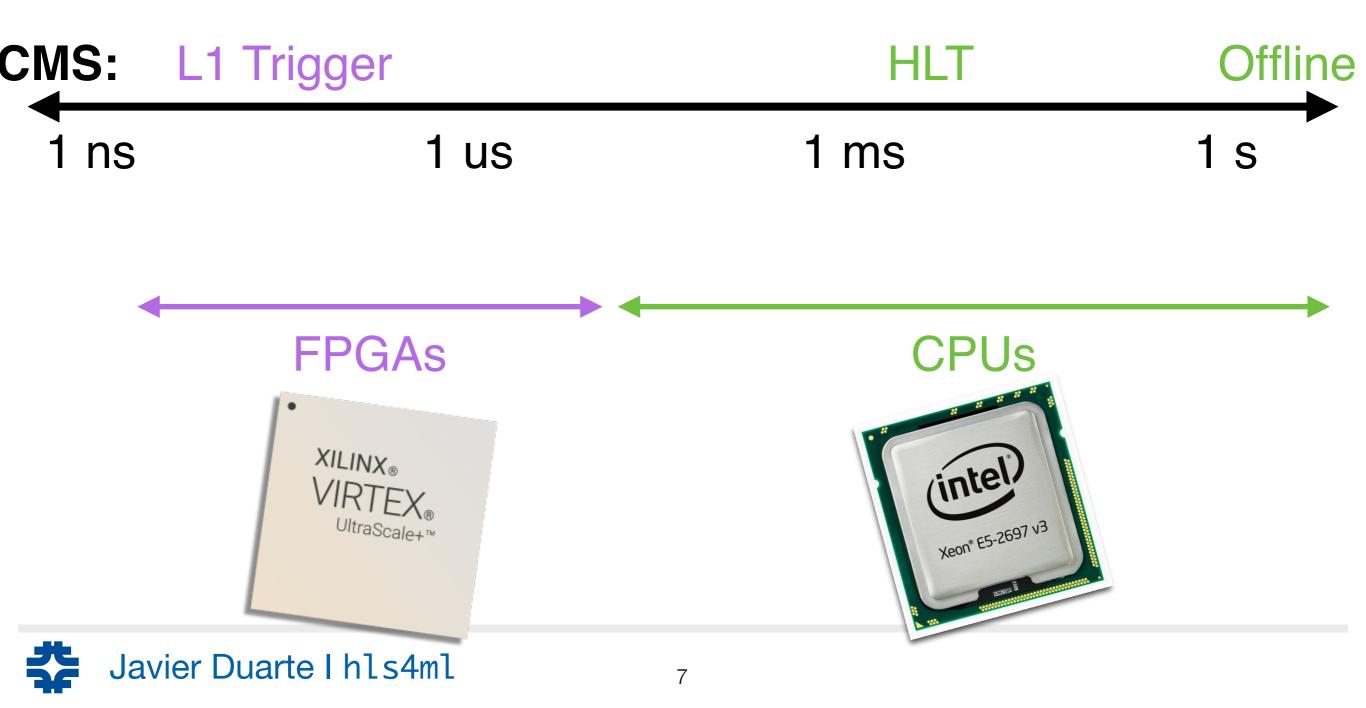


- Level-1 Trigger (hardware)
- 99.75% rejected
- decision in ~4 µs

- High-Level Trigger (software)
- 99% rejected
- decision in ~100s ms

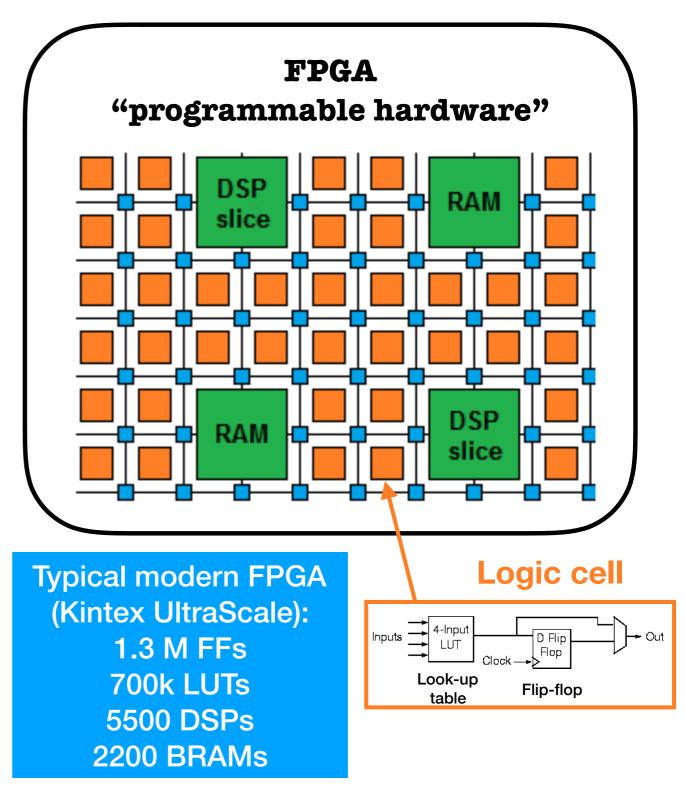
• After trigger, 99.99975% of events are gone forever

HEP Latency Landscape



Field-Programmable Gate Array

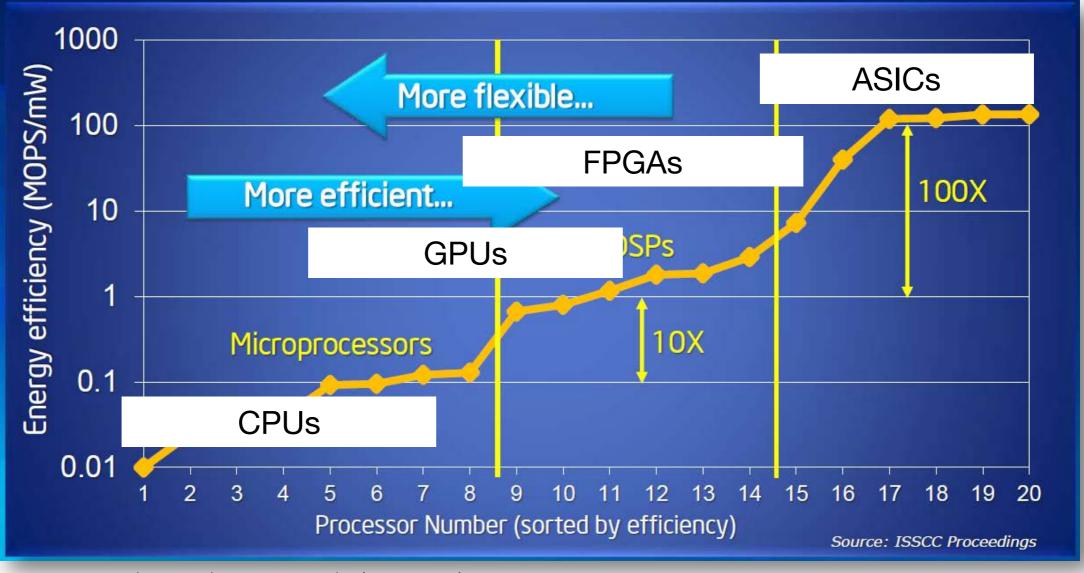
- Flexible: re-programmable interconnects between configurable logic blocks and embedded components
 - LUTs (logic),
 Flip-Flops (registers),
 DSPs (arithmetic),
 Block RAMs (memory)
- High Throughput: O(100) optical transceivers running at O(15) Gbs
- Massively parallel
- Low power (relative to CPU/ GPU)



CPUs, GPUs, FPGAs, and ASICs

How are they different?

FPGAs are the middle ground of latency, energy efficiency, and flexibility



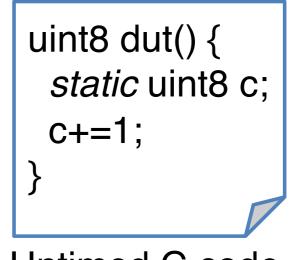
Source: Bob Broderson, Berkeley Wireless group

High-Level Synthesis

 FPGA development is becoming more accessible, with tools like High-Level Synthesis: untimed C code with additional directives that is synthesized into RTL Verilog/VHDL

```
module dut(rst, clk, q);
 input rst;
 input clk;
 output q;
 reg [7:0] c;
 always (a) (posedge clk)
 begin
  if(rst == 1b'1) begin
    c <= 8'b0000000;
 end
 else begin
  c \le c + 1;
 end
 assign q = c;
endmodule
```

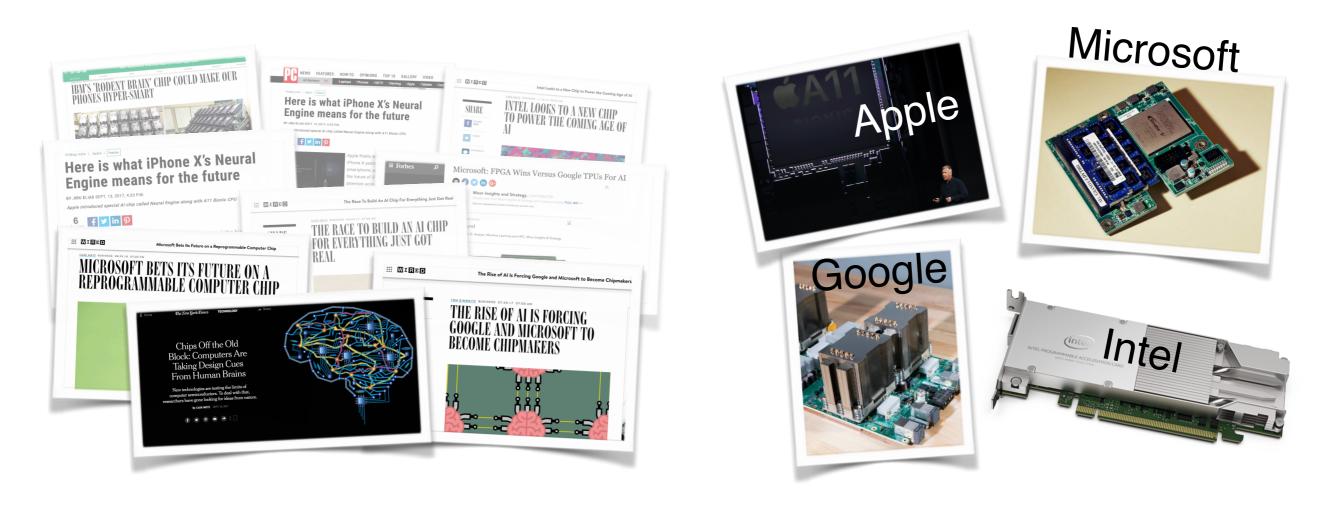
RTL Verilog



Untimed C code

Industry Trends

- Industry is moving toward custom hardware and FPGAs to quickly apply ML algorithms
- Already being used as backend accelerators for Bing web searches, Siri queries, and more...

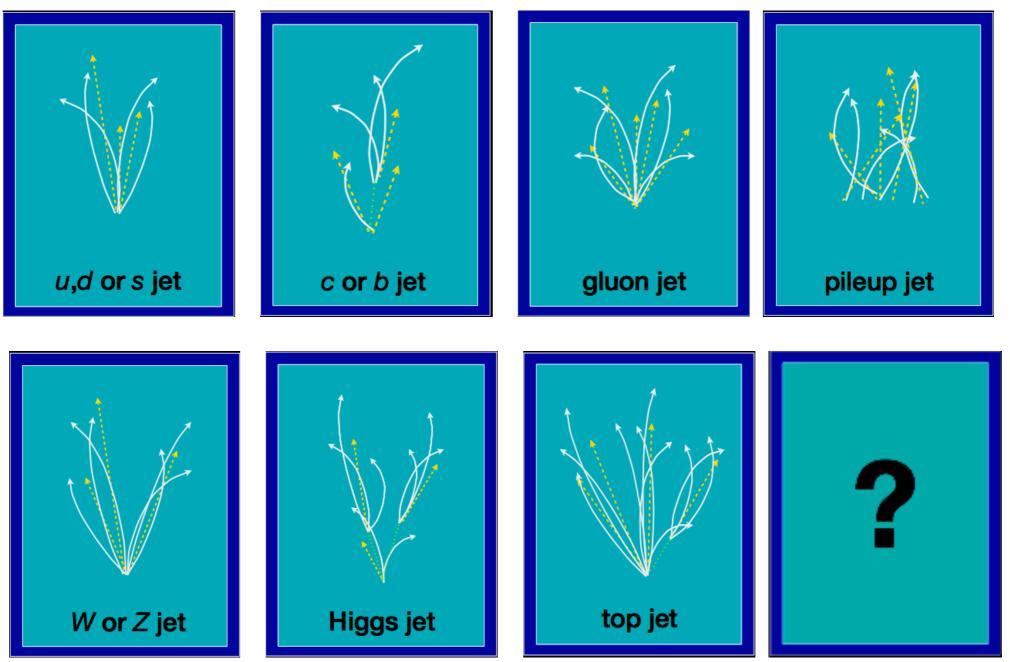


hls4ml

- hls4ml: neural network translation library for HLS
 - Support for common ML workflows and architectures
 - Tunable configuration for different use cases
- Focus on L1 trigger as 1st application
 - What can we do in < µs on one FPGA?

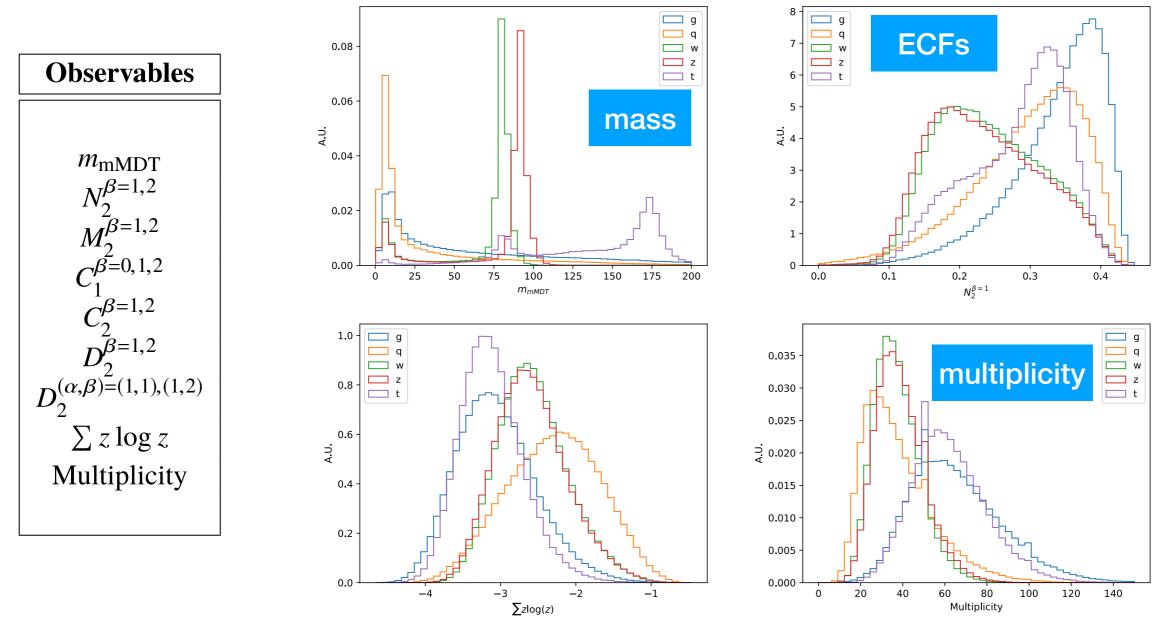
Case Study and Design Exploration

Case Study: Jet Substructure



 Illustrative example: not necessarily the most realistic for L1 today, but lessons are generic

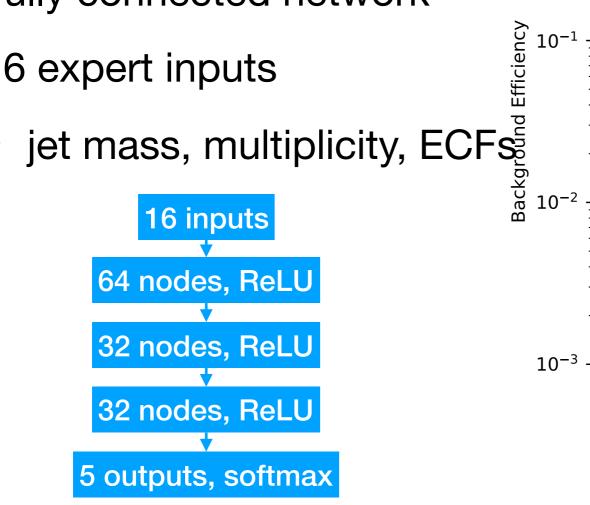
Jet Substructure Inputs



- Groomed mass separates top, W/Z, and quark/gluon
- top/gluon have greater multiplicity than W/Z/quark
- ECF N₂^{β=1} separates 2 and 3-prong jets (W/Z/top) from 1-prong jets (quark/gluon)

Case Study: Jet Substructure

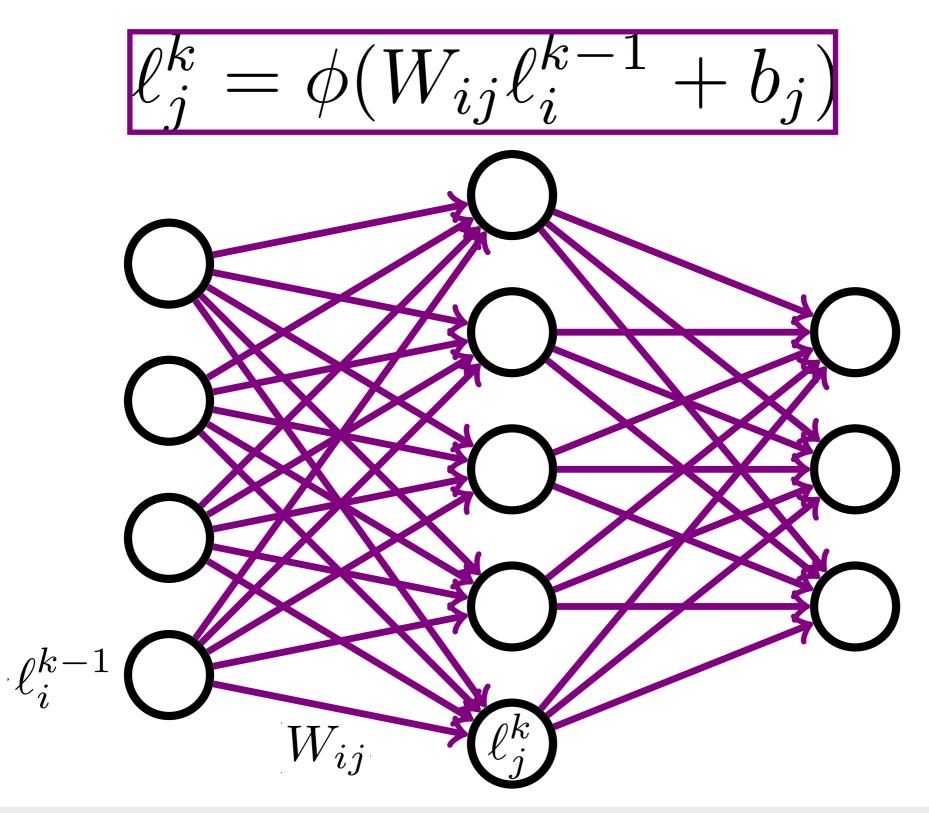
- 5 output multi-classifier
 - Does a jet originate from a quark, gluon, W/Z boson, top quark?
- Fully connected network
- 16 expert inputs

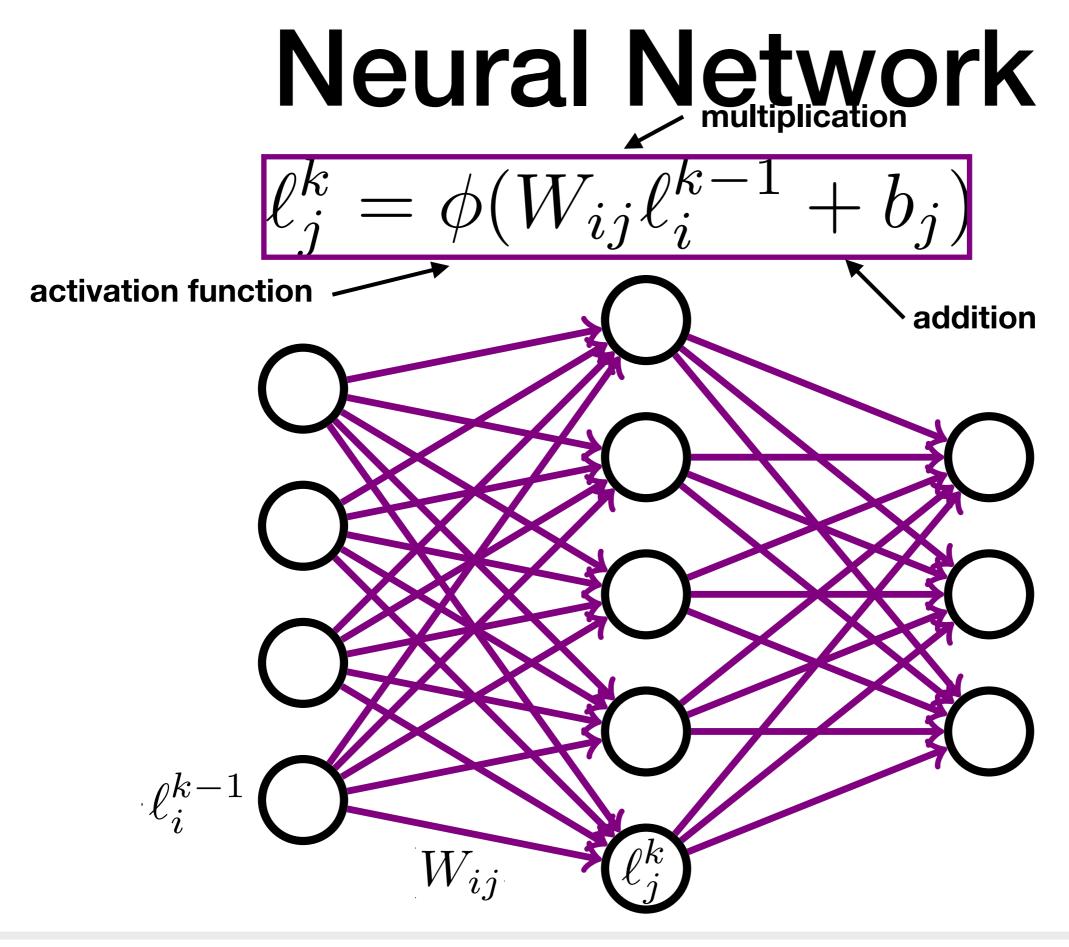


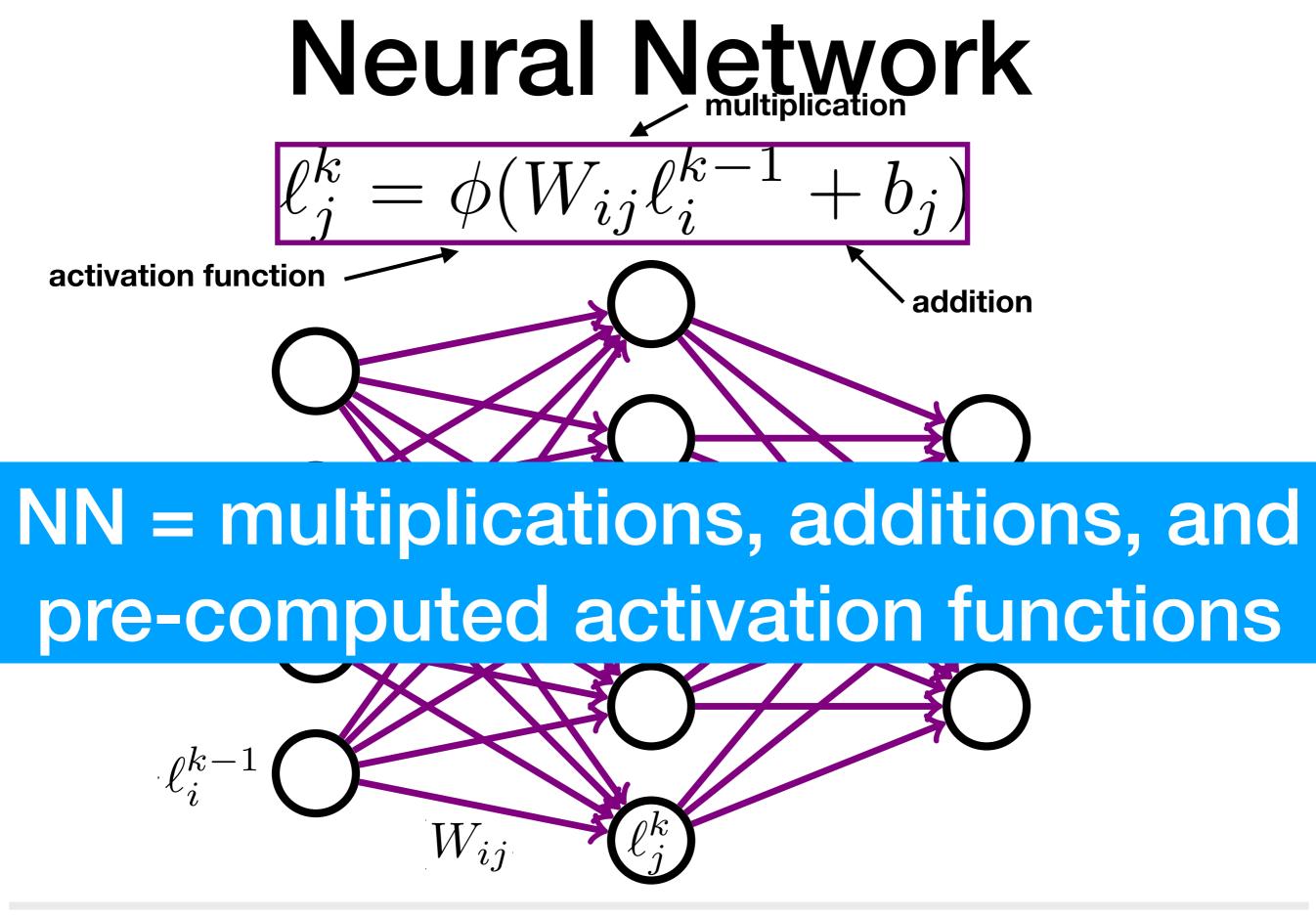
auc = area under ROC curve (100% is perfect, 20% is random)

hls4ml 10⁰ g tagger, AUC = 93.8%q tagger, AUC = 90.4%w tagger, AUC = 94.6%z tagger, AUC = 93.9%t tagger, AUC = 95.8%better 10^{-3} 0.2 0.8 0.0 0.4 1.0 0.6 Signal Efficiency

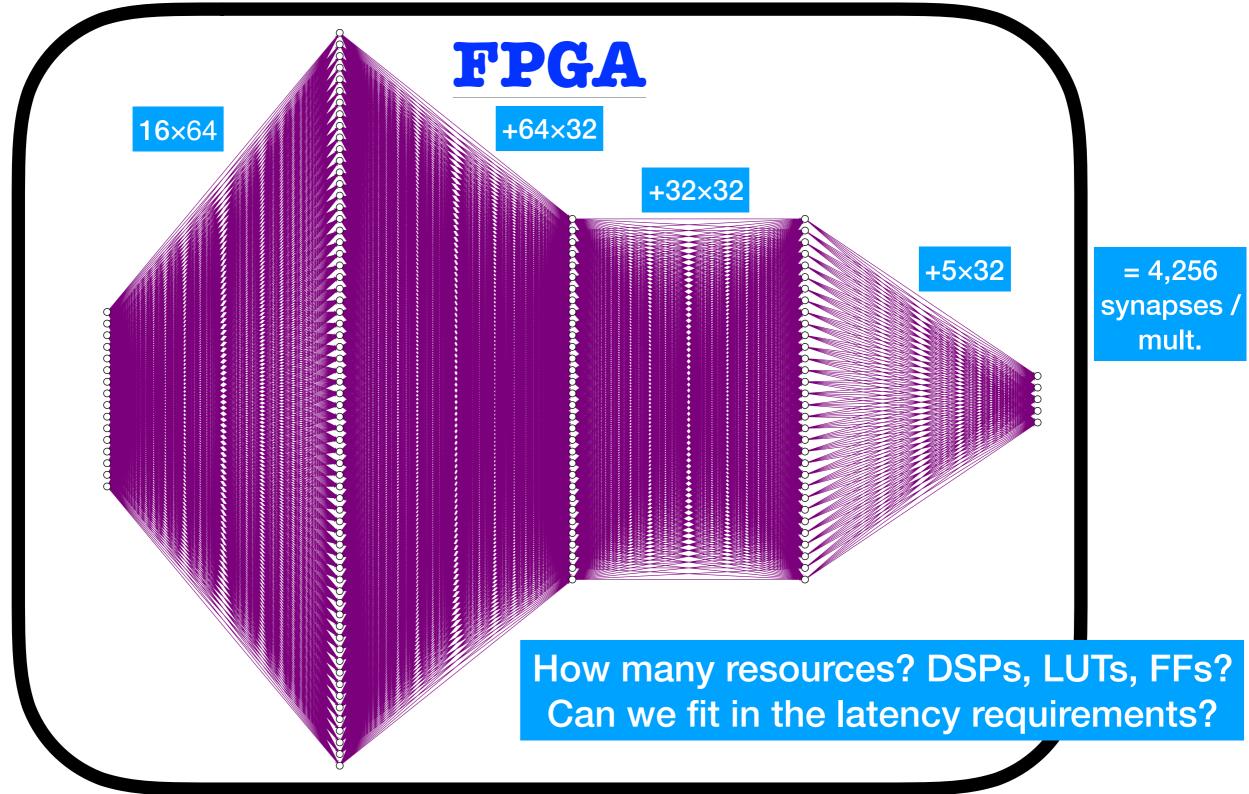
Neural Network





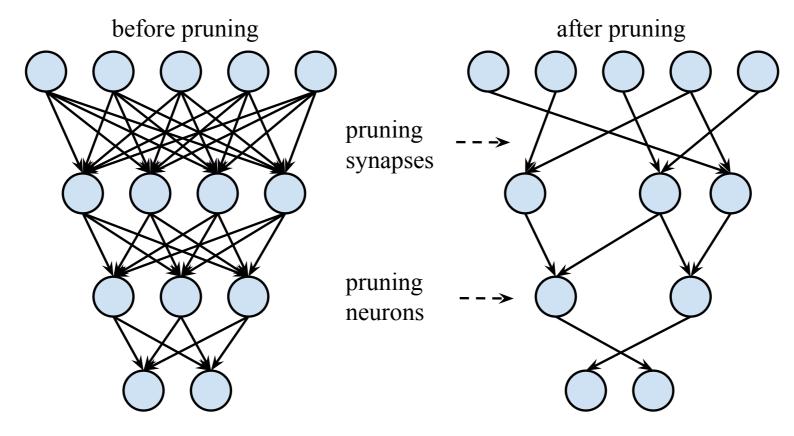


ML in FPGAs?



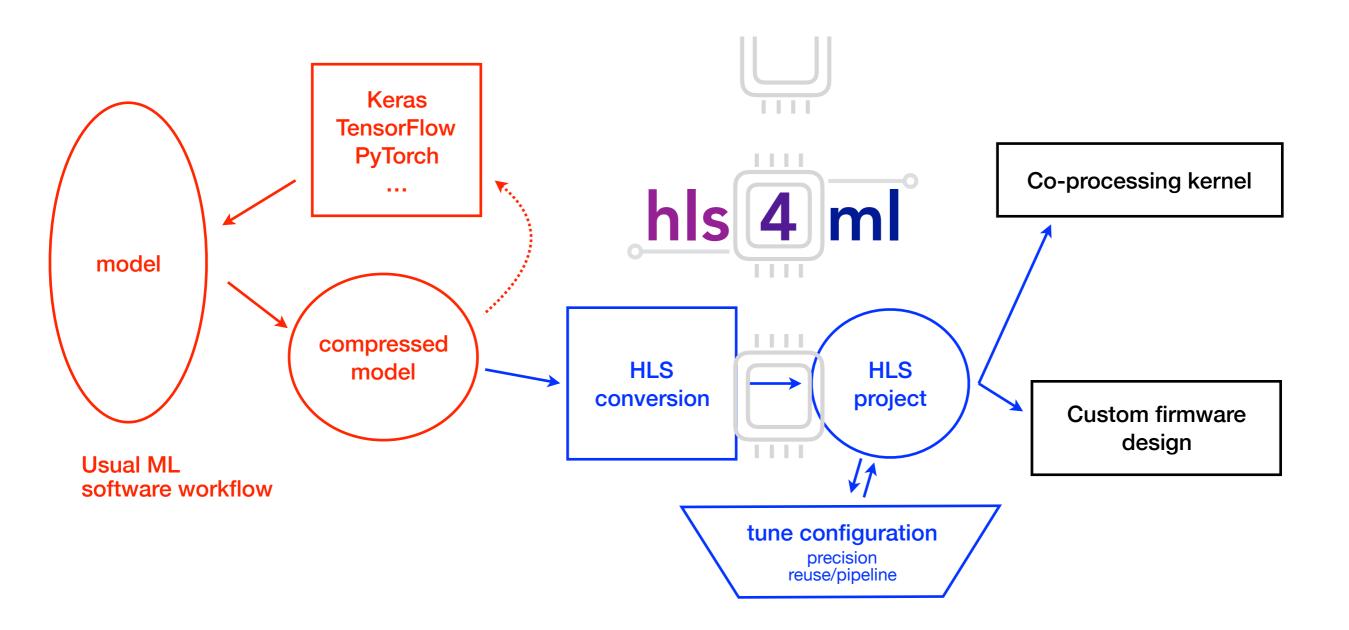
Efficient Neural Networks

- Compression
 - Maintain same performance while removing redundant synapses and neurons
- Quantization
 - 32-bit floating point math is overkill
 - 20-bit, 18-bit, 8-bit, ...? fixed point, integers? binarized?



For further reading: arXiv:1510.00149

Design Exploration



Training

Training/Compression

K Keras

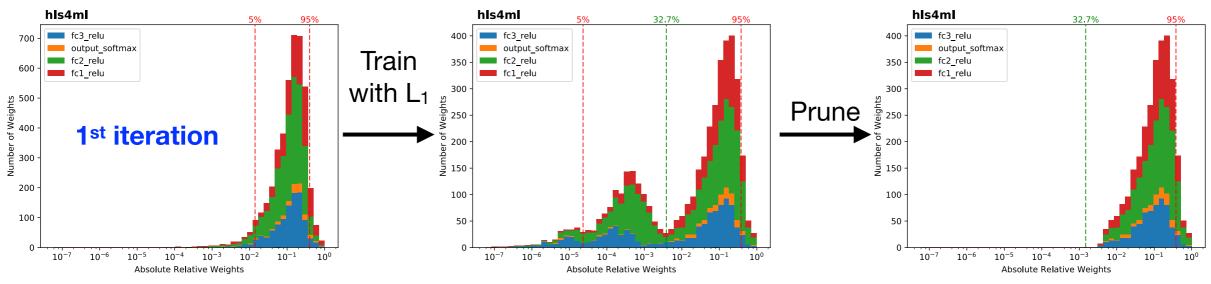
Example: <u>https://github.com/hls-fpga-</u> machine-learning/keras-training/

(Some useful stuff for compression too)

Export Model json_s

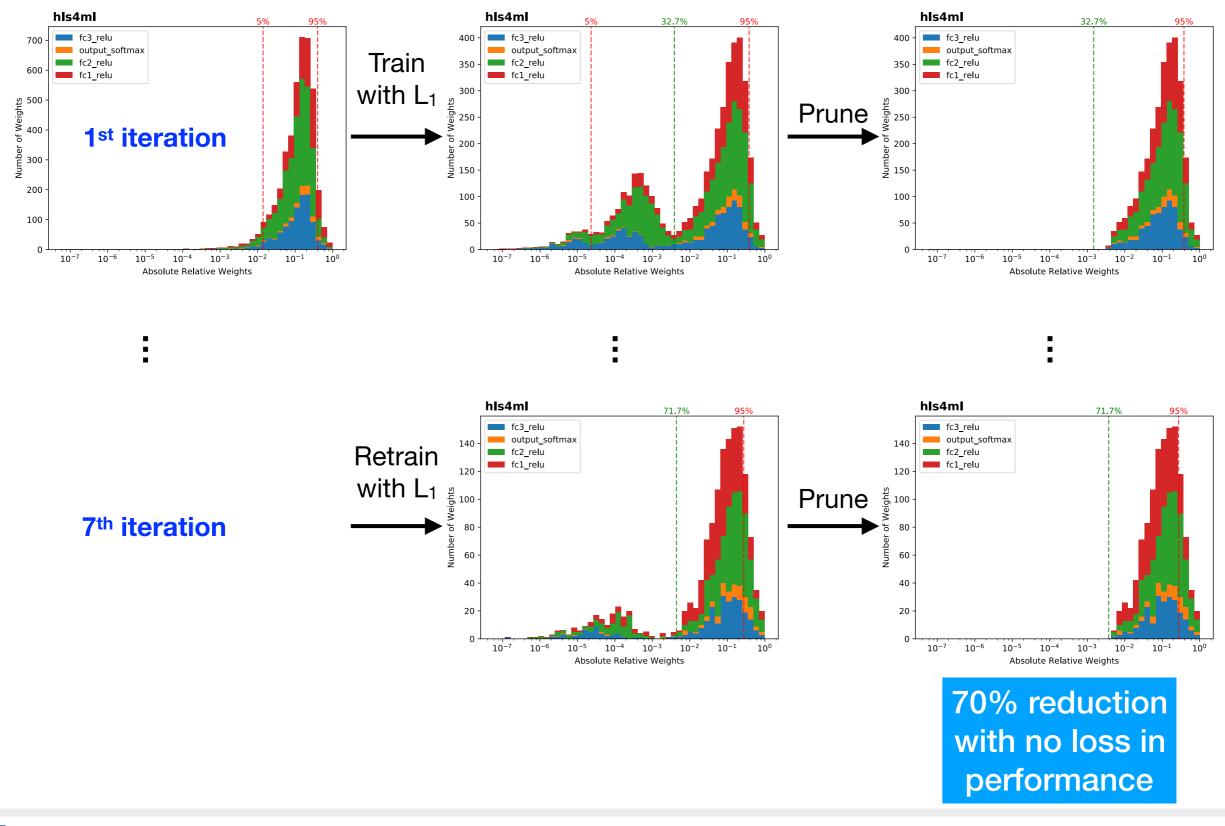
json_string = keras_model.to_json()
keras_model.save_weights('my_model_weights.h5')

Training for Compression



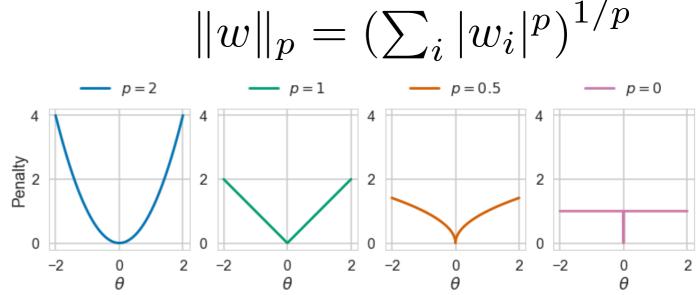
- Many possible schemes for compression
- Simple, iterative version:
 - Train with L₁ regularization (down-weights unimportant synapses) $L_{\lambda}(w) = L(w) + \lambda ||w||_1 \qquad ||w||_1 = \sum_i |w_i|$
 - Remove X% of weights and retrain
 - Repeat

Training for Compression



Other Compression Schemes Louizos et al. 2017

- Train with L_p (0≤p<1) regularization to promote sparsity (though difficult to optimize)
 - as $p \rightarrow 0$, $L_p \rightarrow L_0$
- "Optimal brain damage:" use second derivatives of loss function to rank parameter saliency (rather than using parameter magnitude)
- Weight-sharing using k-means clustering to identify weights to share
- Huffman coding (optimal prefix)

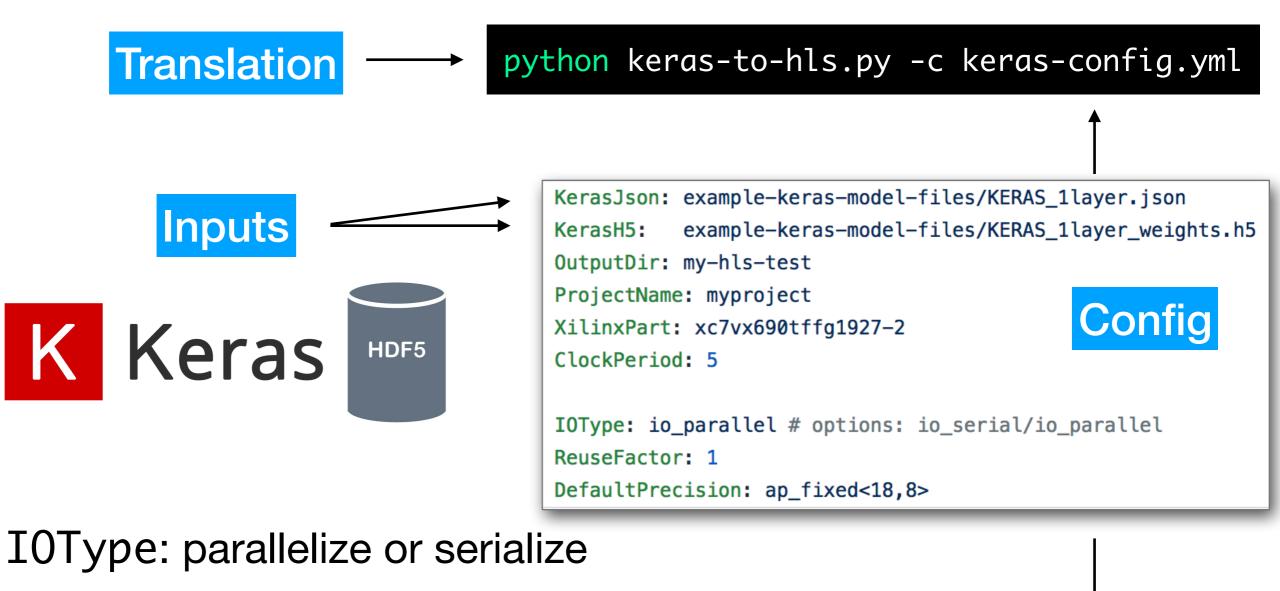


LeCun et al. 1989 <u>NIPS 250</u>

arXiv:1712.01312

Han et al. 2015 arXiv:1510.00149

Translation

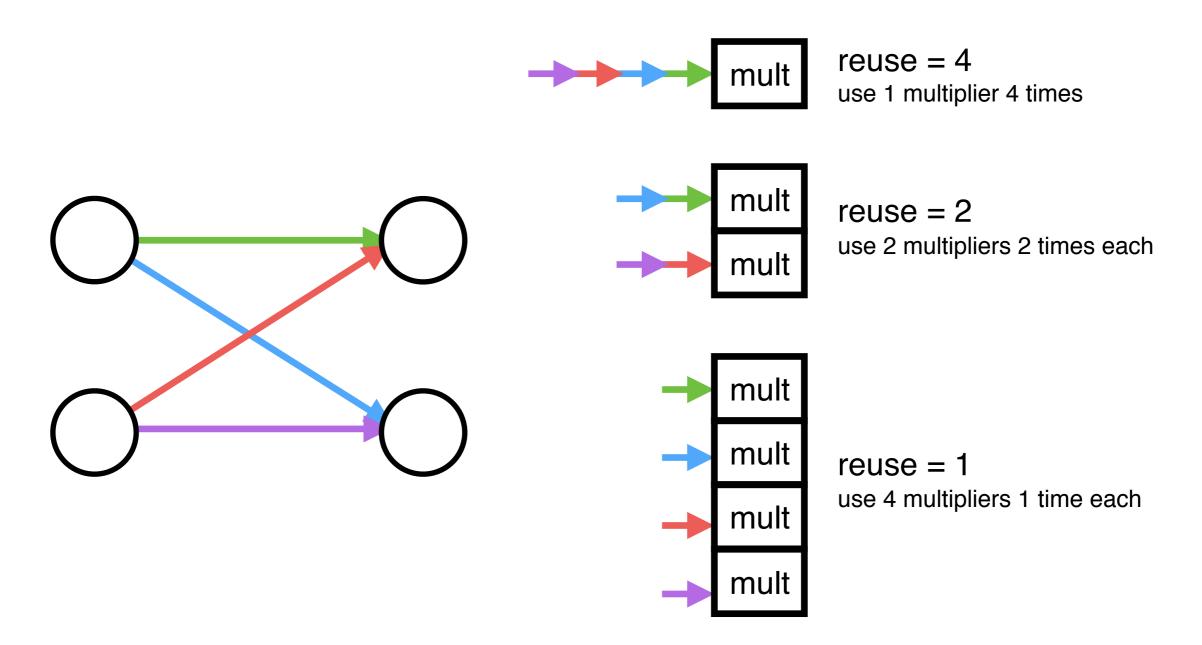


- ReuseFactor: how much to parallelize
- DefaultPrecision: inputs, weights, biases

my-hls-test/:
build_prj.tcl
firmware
myproject_test.cpp

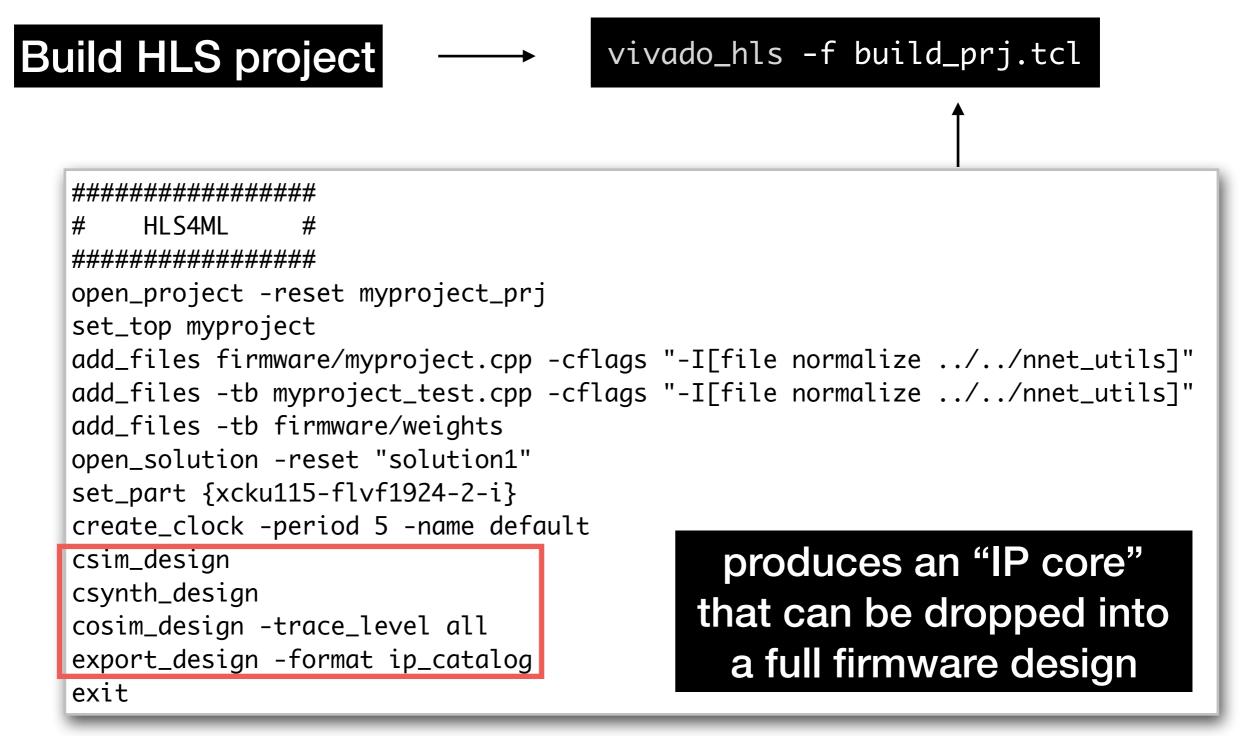
Network Tuning: Parallelization

ReuseFactor: how much to parallelize



related to the Initiation Interval = when new inputs are introduced to the algo.

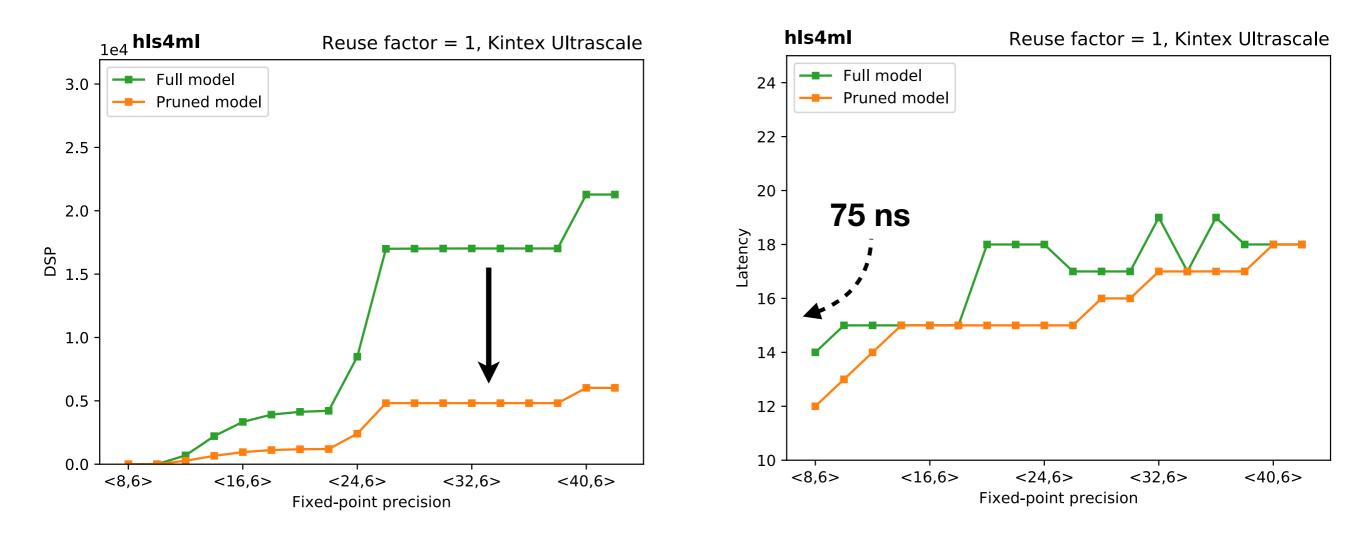
HLS Project



Study Results

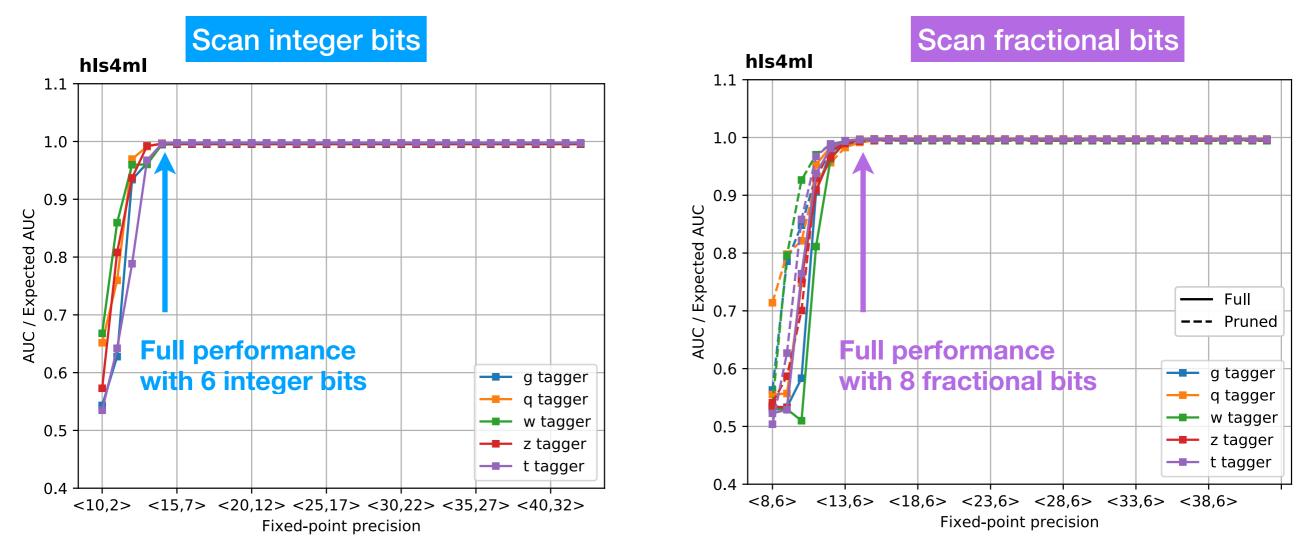
Xilinx Vivado 2017.2 Clock frequency: 200 MHz FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104)

Compression



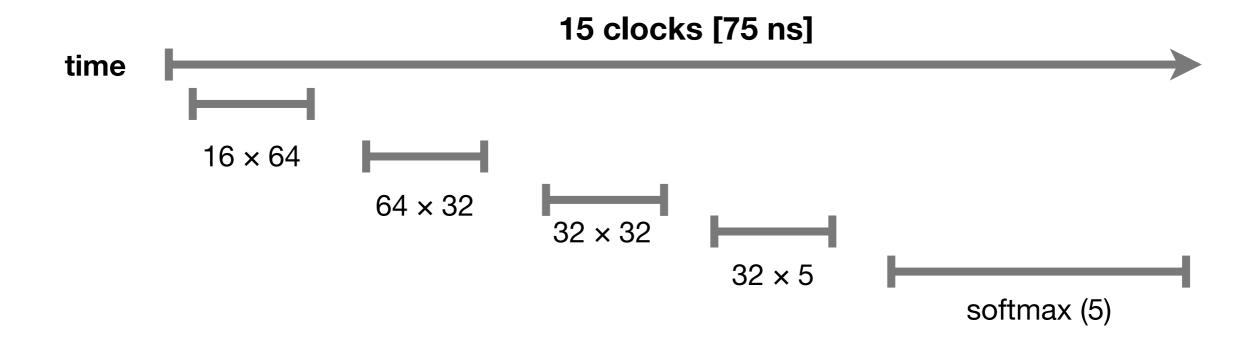
- Big reduction in DSP usage with pruned model!
- ~15 clocks @ 200 MHz = 75 ns inference

Quantization



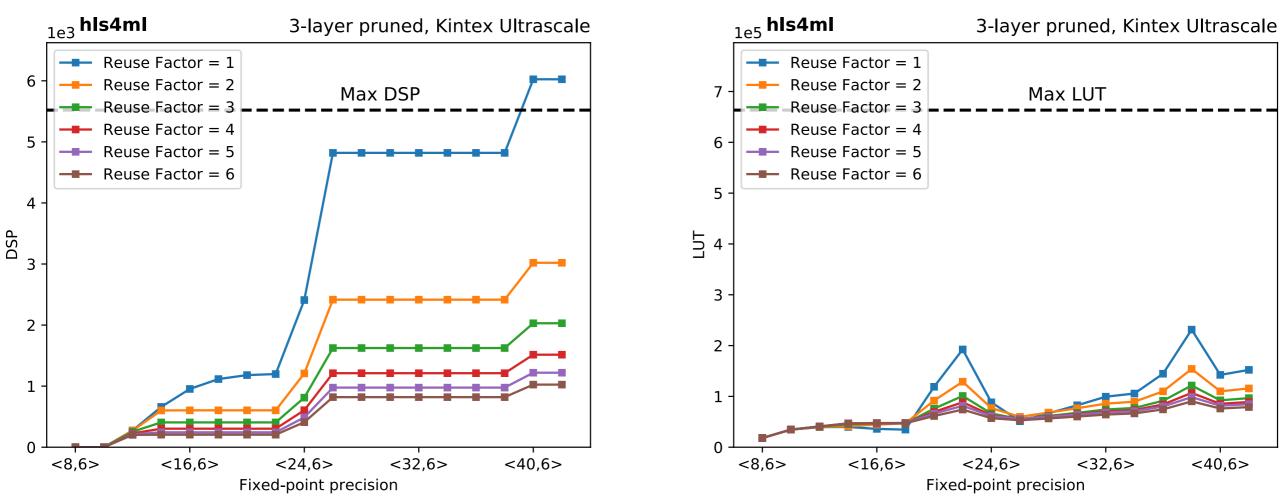
 General strategy: avoid overflows in integer bit then scan the decimal bit until reaching optimal performance ap_fixed<width,integer>
0101.1011101010
integer
fractional
width

Resource Usage and Timing



reuse = 1 <16, 6> bits	BRAM	DSP	FF	LUT
Total	13	954	53k	36k
% Usage	~0%	17%	3%	5%

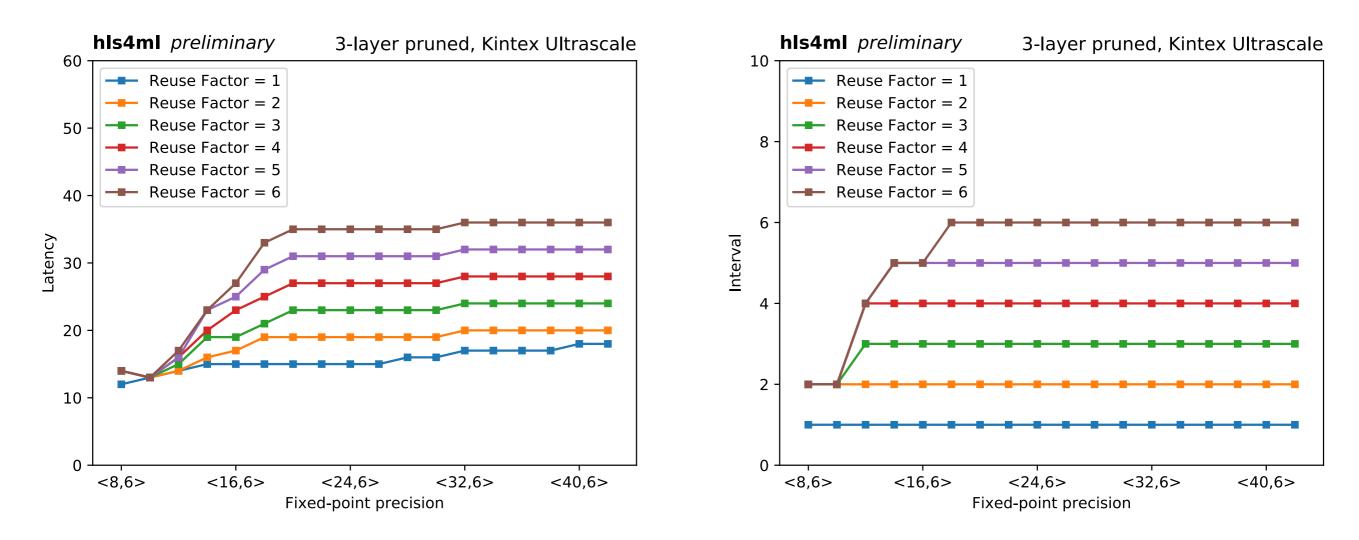
Resource Usage with Reuse



• Tuning the throughput with reuse factor reduces the DSP usage

- Steady increase of LUTs and FFs vs. bit precision
- Spikes in LUTs at the DSP precision transitions (not present in final implementation)

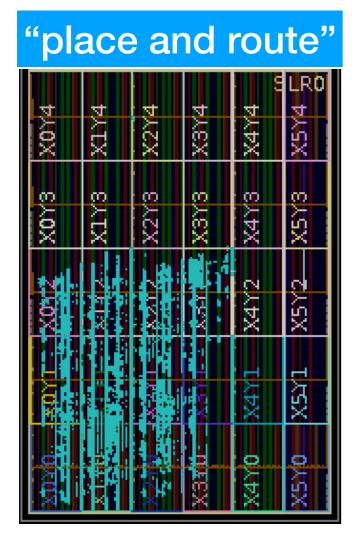
Timing with Reuse



- Additional latency introduced by reusing the multipliers
- Initiation interval scales with the reuse factor

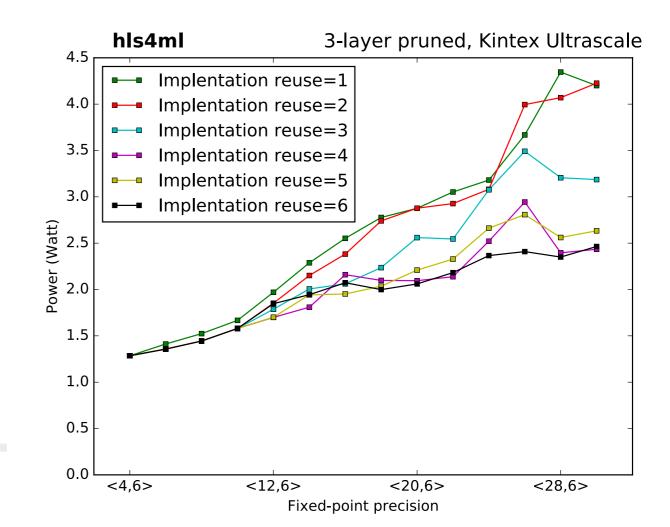
Implementing the HLS Design

36

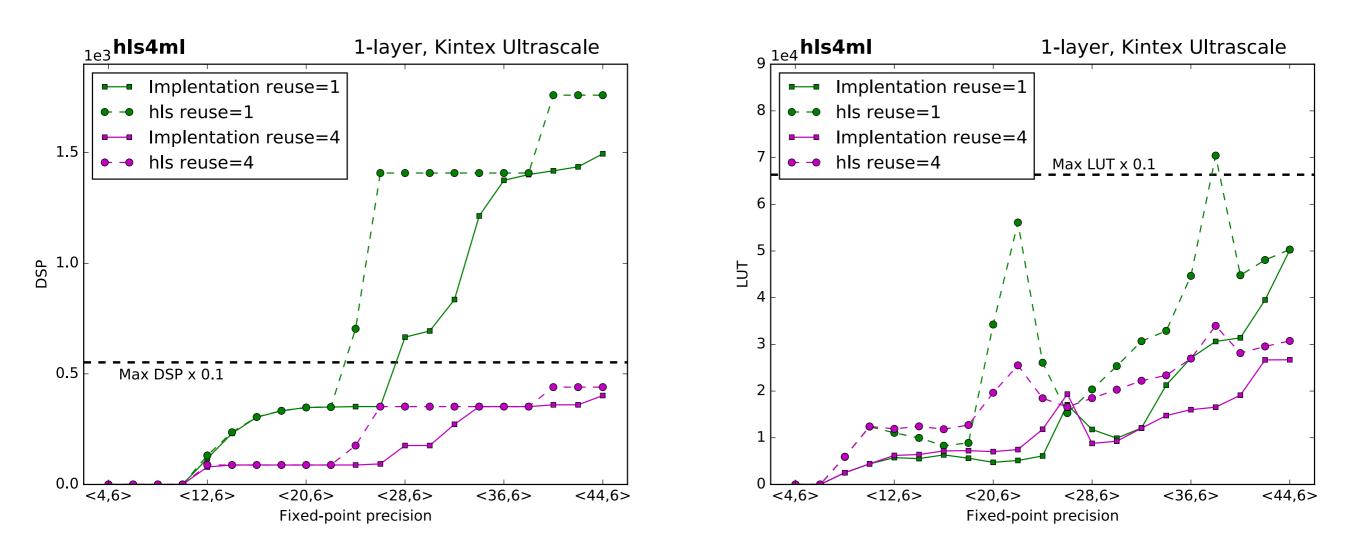


- How optimal is the HLS design (vs. RTL)?
 - For DSPs, HLS seems close to "backof-the-envelope" optimal estimate
- HLS is good for quickly getting a conservative estimate of resources

 Power decreases as throughput is decreased (by increasing reuse factor)



HLS vs. Implementation



- HLS estimates are conservative compared to final implementation
- No spikes in LUTs at the DSP precision transitions in implementation

Summary and Outlook

hls4ml Status

hls-fpga-machine-learning.github.io/hls4ml

hls4ml Setup Dependencies Quick Start Configuration Concepts	hls ml
Release Notes Reference and Contributors Code Repository Published with GitBook	A package for machine learning inference in FPGAs. We create firmware implementations of machine learning algorithms using high level synthesis language (HLS). We translate traditional open-source machine learning package models into HLS that can be configured for your use-case! The project is currently in development, so please let us know if you are interested, your experiences with the package, and if you would like new features to be added.
Published with GitBook	contact: hls4ml.help@gmail.com
	in beta version (March 17, 2018), v0.1.2

- Beta version is live! <u>arXiv:1804.06913</u>
- Next steps:
 - Applications?
 - Bigger networks?

20 Apr 2018 arXiv:1804.06913v2 [physics.ins-det]

Fast inference of deep neural networks in FPGAs for particle physics

Javier Duarte^{*a*}, Song Han^{*b*}, Philip Harris^{*b*}, Sergo Jindariani^{*a*}, Edward Kreinar^{*c*}, Benjamin Kreis^{*a*}, Jennifer Ngadiuba^{*d*}, Maurizio Pierini^{*d*}, Ryan Rivera^{*a*}, Nhan Tran^{*a*}, Zhenbin Wu^{*e*}

^a Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

^bMassachusetts Institute of Technology, Cambridge, MA 02139, USA

^cHawkEye360, Herndon, VA 20170, USA

^dCERN, CH-1211 Geneva 23, Switzerland

^eUniversity of Illinois at Chicago, Chicago, IL 60607, USA

E-mail: hls4ml.help@gmail.com

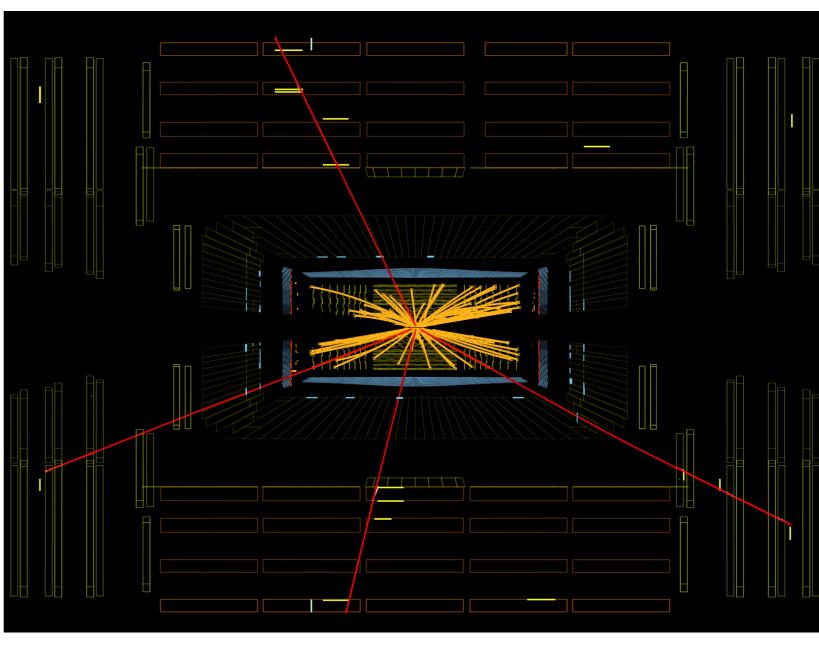
ABSTRACT: Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics capabilities through the improvement of the real-time event processing techniques. Machine learning methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a whole. However, exploration of the use of such techniques in low-latency, low-power FPGA hardware has only just begun. FPGA-based trigger and data acquisition (DAQ) systems have extremely low, sub-microsecond latency requirements that are unique to particle physics. We present a case study for neural network inference in FPGAs focusing on a classifier for jet substructure which would enable, among many other physics scenarios, searches for new dark sector particles and novel measurements of the Higgs boson. While we focus on a specific example, the lessons are far-reaching. We develop a package based on High-Level Synthesis (HLS) called hls4ml to build machine learning models in FPGAs. The use of HLS increases accessibility across a broad user community and allows for a drastic decrease in firmware development time. We map out FPGA resource usage and latency versus neural network hyperparameters to identify the problems in particle physics that would benefit from performing neural network inference with FPGAs. For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.

L1 Muon Trigger Application

- Current **BDT** for CMS Level-1 muon p_T assignment based on defection angles (ΔΦ, Δθ) and other variables
 - Implemented using a

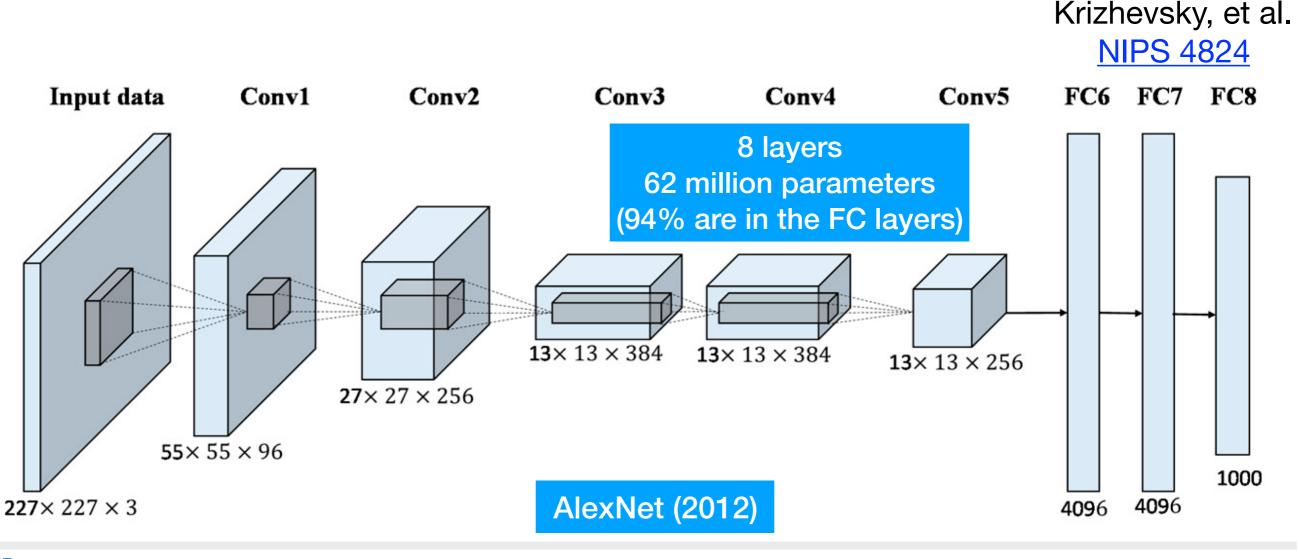
 GB pre-computed LUT
 that stores the BDT output
 for every the possible
 input (compressed to 30 bits)
- CMS studying NN implemented with hls4ml, which allows additional inputs (e.g. 68 variables with 18 bits each = 1228 bits!) and improved p_T resolution

ACAT 2017 BDT L1T



Big Convolutional Neural Networks

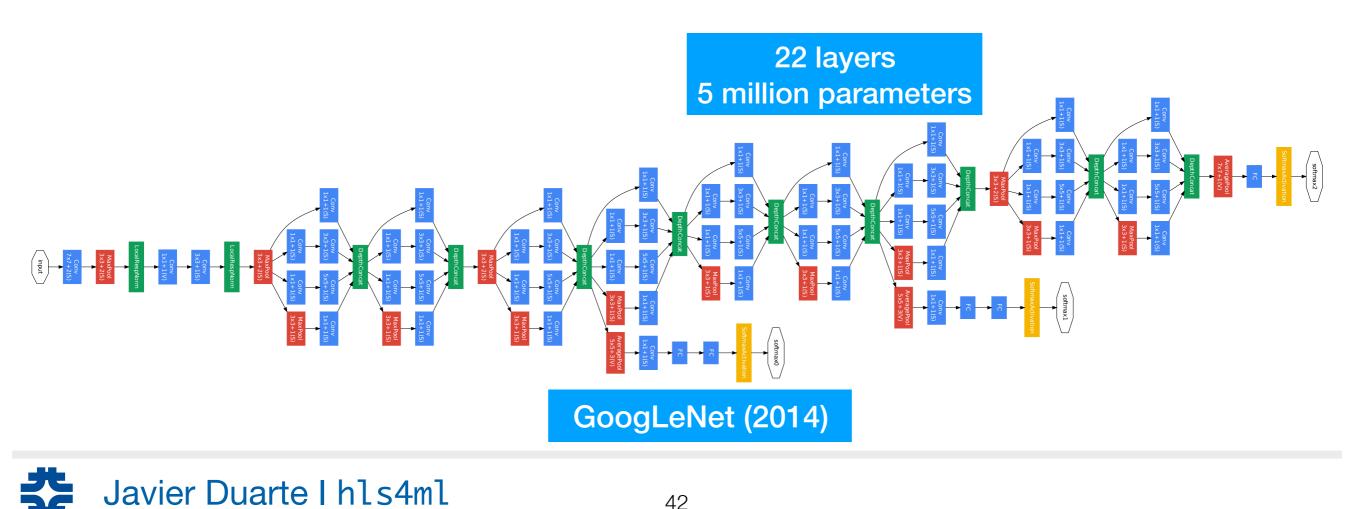
- Main task is computer vision/image recognition
- Control the number of parameters by baking in assumptions like locality and translation invariance to share weights within a layer



Big Convolutional Neural Networks

- Main task is computer vision/image recognition
- Control the number of parameters by baking in assumptions like locality and translation invariance to share weights within a layer

Szegedy et al. arXiv:1409.4842

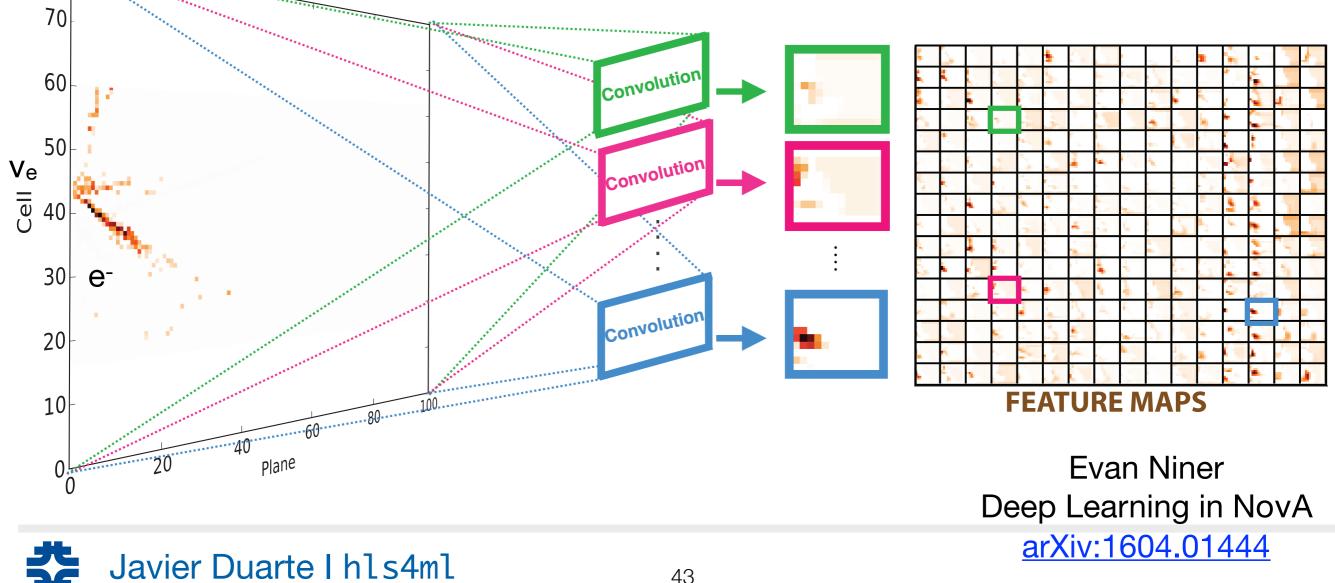


CNNs in Neutrino Experiments

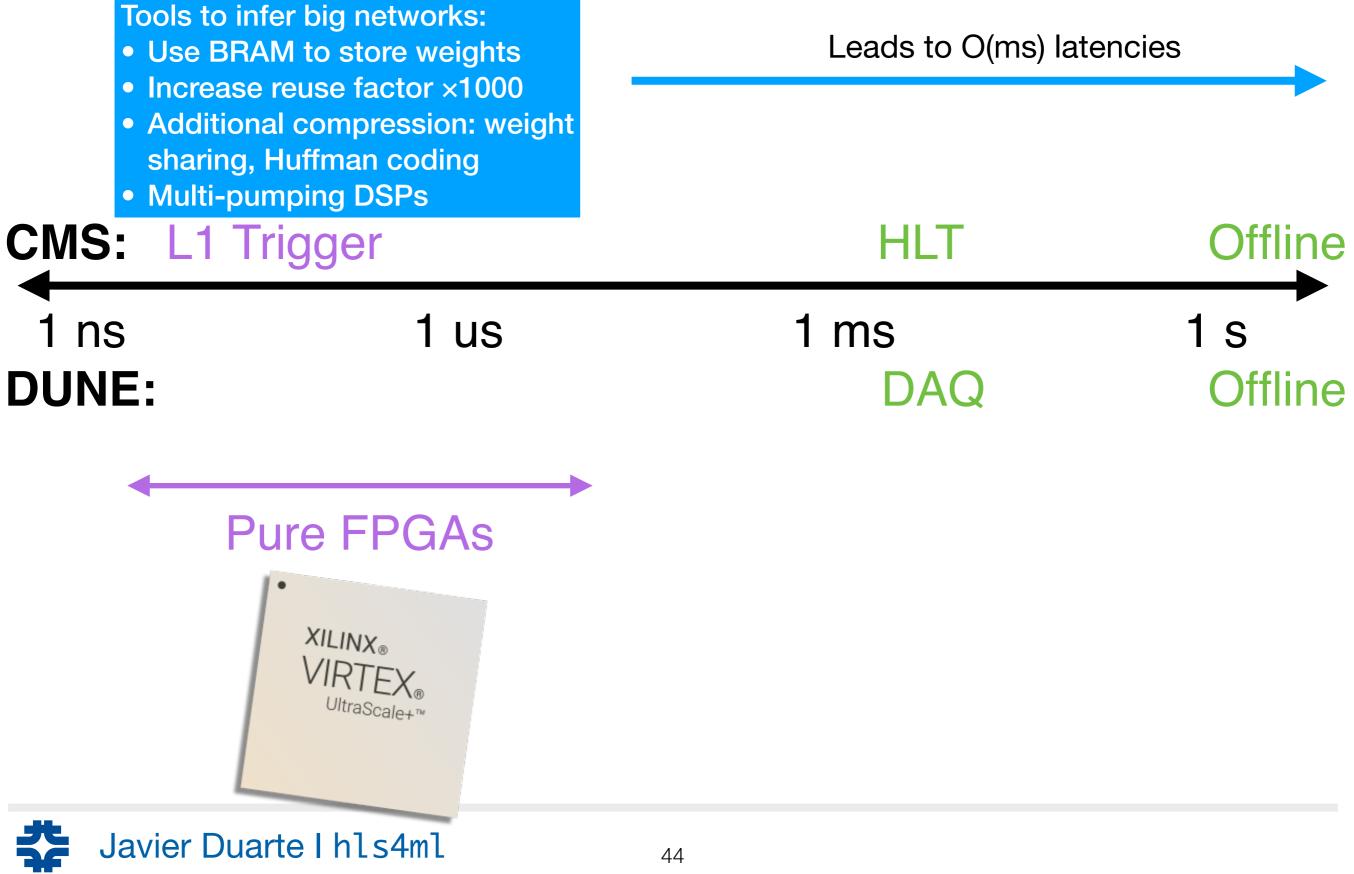
- Readout detector as a (multidimensional) image
- Shown to be effective at classifying NovA neutrino events
- Adapted from GoogLeNet

08

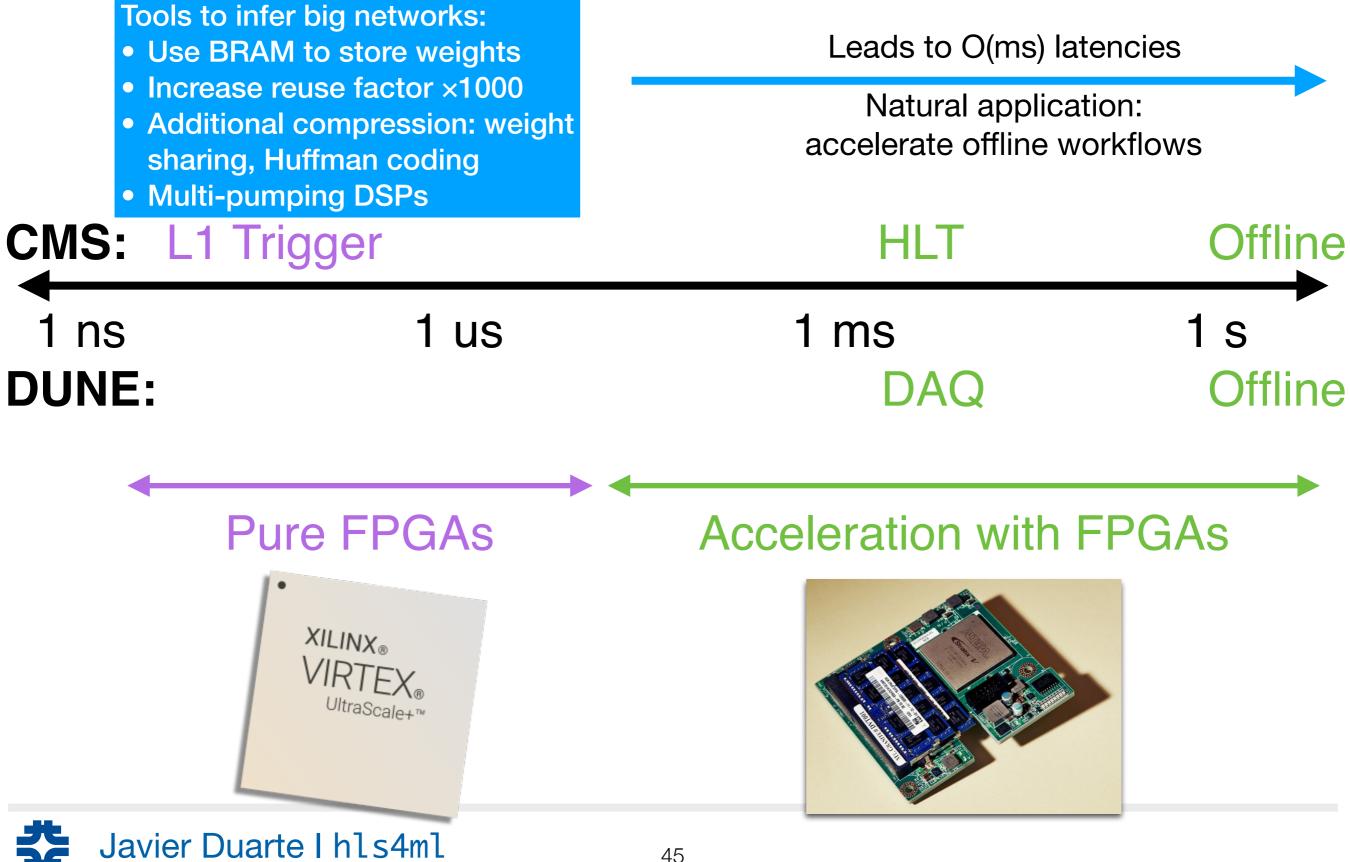
Can we implement these on an FPGA?



HEP Latency Landscape



HEP Latency Landscape



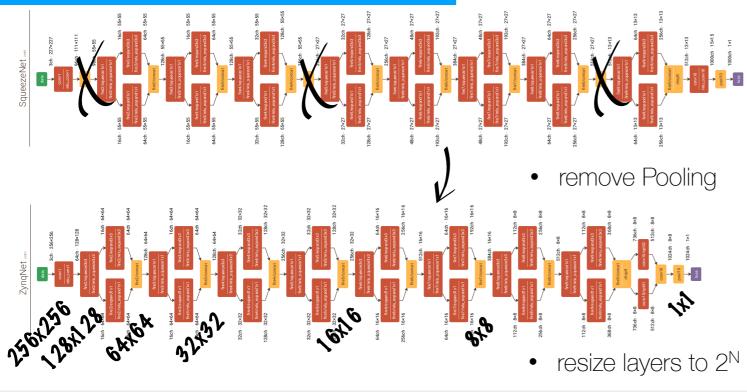
SqueezeNet

Han et al. 2016 arXiv:1602.07360 Gschwend 2016

- 6-bit SqueezeNet smaller than 32-bit AlexNet by a factor of 500 and achieves the same accuracy (Han et al. 2016)
- Fits on one FPGA with on board memory (Gschwend 2016)
- Others have also demonstrated CNNs on FPGAs

CNN architecture	Compression Approach	Data	$Original \rightarrow$	Reduction in	Top-1	Top-5
		Туре	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%

Additional optimization for FPGA



FPGA resources

resource	Block RAM	DSP Slices	FF	LUT
used available	996 1090	739 900	137k 437k	154k 218k
utilization	91%	82%	31%	70%

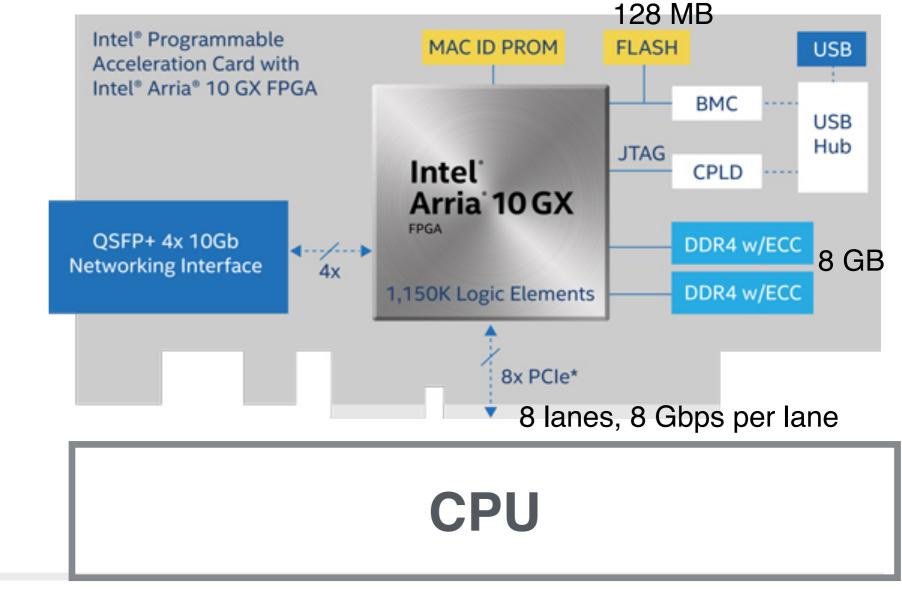
Javier Duarte I hls4ml

FPGA Co-Processor Acceleration Card

Leverage recent advances/trends in industry

Targeted Workloads

- Big data analytics
- Artificial intelligence
- Video transcoding
- Cyber security
- High-performance computing
- Financial technology, or FinTech

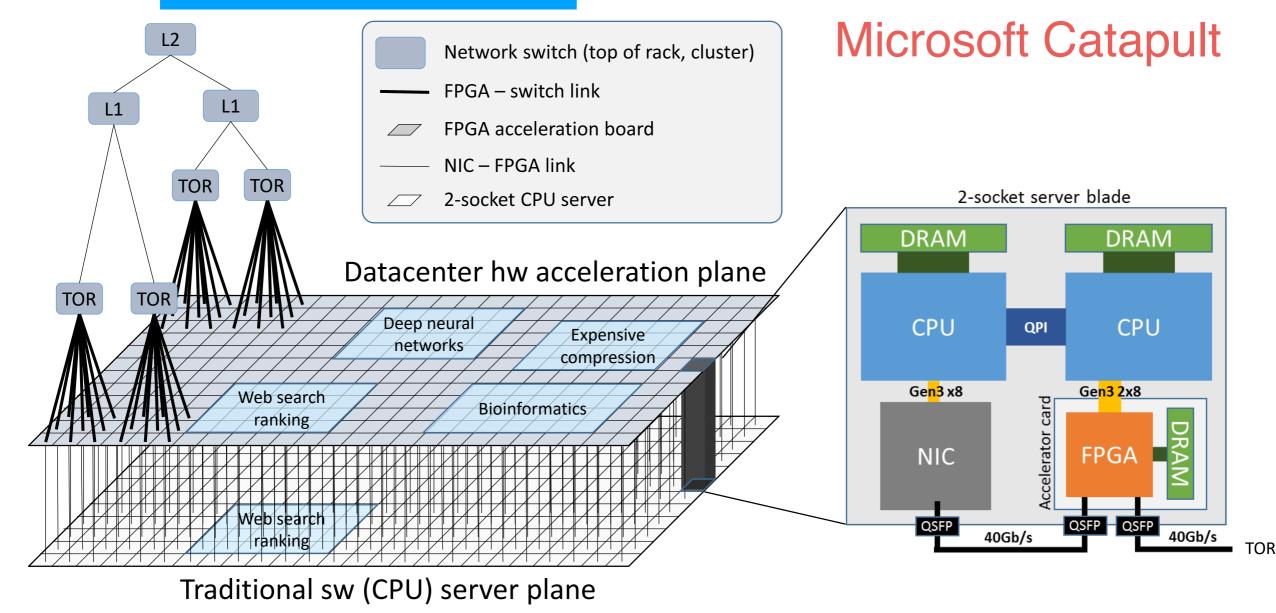


Javier Duarte I hls4ml

Cloud Scale

Machine Learning Forum Andrew Putnam (Microsoft Research) May 14 @ 1pm

>100 k FPGAs can communicate to each other



A. Caulfield, et al., Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (2016). https://www.microsoft.com/en-us/research/publication/configurable-cloud-acceleration/

Javier Duarte I hls4ml

Summary and Outlook

- We introduce an HLS-based software/firmware compiler for ultra low-latency applications
 - Case study with jet substructure in Level-1 trigger
 - Tunable configuration for a broad range of use cases
 - Upcoming features:
 - More network architectures (CNN, RNN, etc.)
 - Support for Altera/Intel Quartus HLS
- FPGAs (with support from industry/cloud computing) may help to accelerate HEP computing workflows
- Exciting times ahead at the intersection of machine learning, custom hardware, and high energy physics

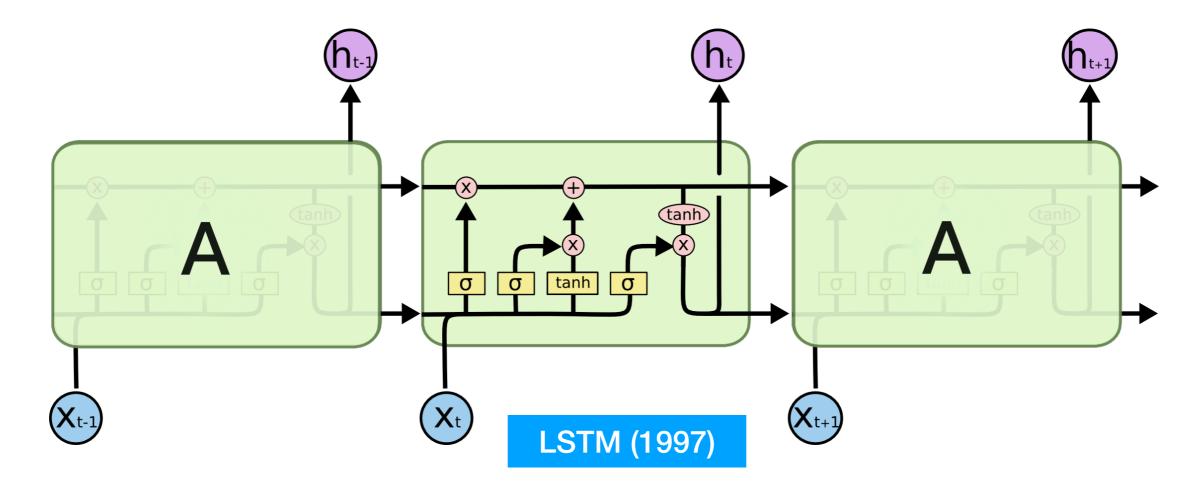
Backup

CNNs on FPGAs

- NIPS 2017 Demo: <u>https://docs.google.com/presentation/d/</u> <u>1mTqsm5TronnB8MFD6yyq3CSPCV4bfck_aQ-ericM9cQ/</u> <u>edit#slide=id.p3</u>
- Snowflake: <u>arXiv:1708.02579</u>
- DNNWeaver: <u>http://act-lab.org/artifacts/dnnweaver/</u>
- fpgaConvNet: <u>http://cas.ee.ic.ac.uk/people/sv1310/</u> <u>fpgaConvNet.html</u>
- Caffeine

Recurrent Neural Network

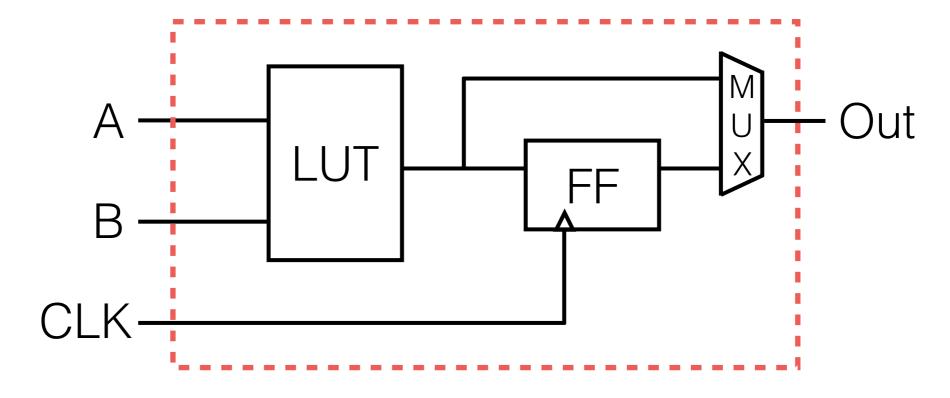
- Main task is language processing, time sequence prediction
- LSTM layers allow learned information to persist; network can learn long-term dependences in sequences

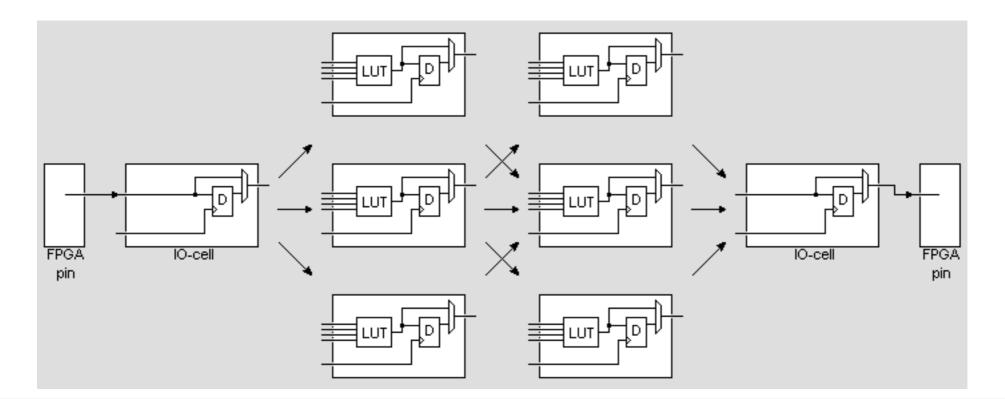


HLS Study Details

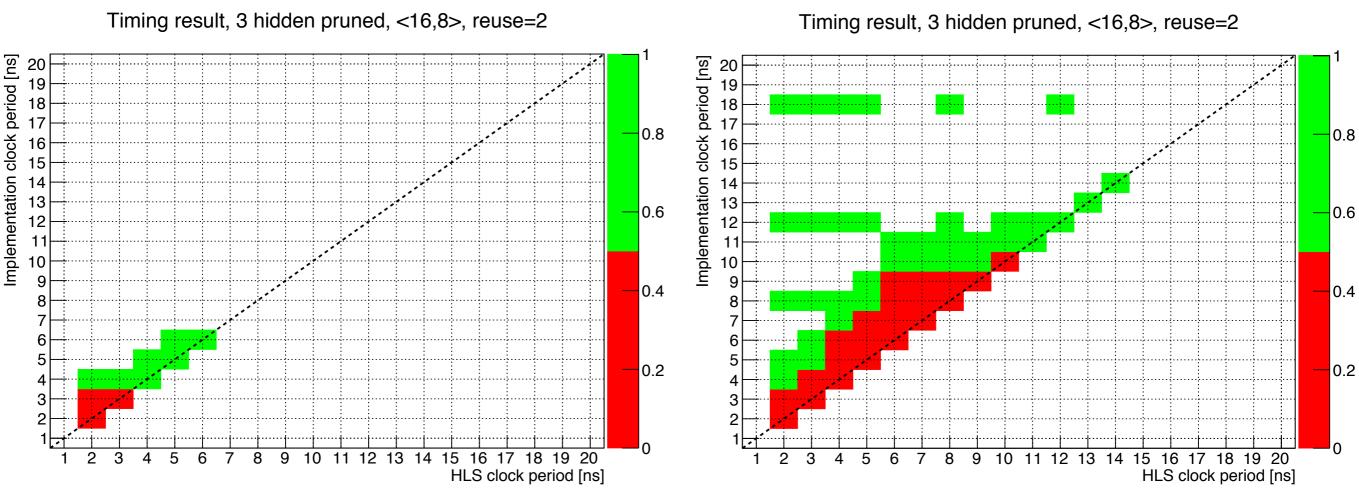
- Xilinx Vivado 2017.2
- Clock frequency: 200 MHz
- FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104)
- A note on inputs:
 - We assume network inputs have already been computed
 - Not a good assumption in the jet substructure case with "expert" features
 - Convolutional and recurrent networks which more naturally operate on "raw" features are in development
- Note: resource usage comes from HLS estimates
 - Discussion on differences w.r.t. implementation later

Logic Cell





Meeting HLS Target Timing v2016.4 v2017.2



- Implementation timing meets HLS target in v2017.2 for clock periods ≥ 11 ns
- Implementation timing meets HLS target in v2016.4 for clock periods ≥ 4 ns

Kintex[®] UltraScale[™] FPGAs

		Device Name	KU025 ⁽¹⁾	KU035	KU040	KU060	KU085	KU095	KU115
Logic Resources		System Logic Cells (K)	318	444	530	726	1,088	1,176	1,451
		CLB Flip-Flops	290,880	406,256	484,800	663,360	995,040	1,075,200	1,326,720
		CLB LUTs	145,440	203,128	242,400	331,680	497,520	537,600	663,360
Memory Resources	Maximum Distributed RAM (Kb)		4,230	5,908	7,050	9,180	13,770	4,800	18,360
	Block RAM/FIFO w/ECC (36Kb each)		360	540	600	1,080	1,620	1,680	2,160
	Block RAM/FIFO (18Kb each)		720	1,080	1,200	2,160	3,240	3,360	4,320
	Total Block RAM (Mb)		12.7	19.0	21.1	38.0	56.9	59.1	75.9
Clock Resources	CMT (1 MMCM, 2 PLLs)		6	10	10	12	22	16	24
CIOCK RESOURCES	I/O DLL		24	40	40	48	56	64	64
I/O Resources	Maximum Single-Ended HP I/Os		208	416	416	520	572	650	676
	Maximum Differential HP I/O Pairs		96	192	192	240	264	288	312
	Maximum Single-Ended HR I/Os		104	104	104	104	104	52	156
	Maximum Differential HR I/O Pairs		48	48	48	48	56	24	72
		DSP Slices	1,152	1,700	1,920	2,760	4,100	768	5,520
	System Monitor		1	1	1	1	2	1	2
Integrated IP	PCIe [®] Gen1/2/3		1	2	3	3	4	4	6
Resources		Interlaken	0	0	0	0	0	2	0
	100G Ethernet		0	0	0	0	0	2	0
	16.3Gb/s Transceivers (GTH/GTY)		12	16	20	32	56	64 ⁽²⁾	64
		Commercial	-1	-1	-1	-1	-1	-1	-1
Speed Grades	Extended		-2	-2 -3	-2 -3	-2 -3	-2 -3	-2	-2 -3
		Industrial	-1 -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -2	-1 -1L -2
	Package Footprint ^(3, 4, 5, 6)	Package Dimensions (mm)		HR I/O, HP I/O, GTH/GTY					
-	A784 ⁽⁷⁾	23x23 ⁽⁸⁾		104, 364, 8	104, 364, 8				
	A676 ⁽⁷⁾	27x27		104, 208, 16	104, 208, 16				
	A900 ⁽⁷⁾	31x31		104, 364, 16	104, 364, 16				
	A1156	35x35	104, 208, 12	104, 416, 16	104, 416, 20	104, 416, 28		52, 468, 28	
	A1517	40x40				104, 520, 32	104, 520, 48		104, 520, 48
	C1517	40x40						52, 468, 40	
Footprint	D1517	40x40							104, 234, 64
Compatible with	B1760	42.5x42.5					104, 572, 44	52, 650, 48	104, 598, 52
Virtex [®] UltraScale Devices	A2104	47.5x47.5							156, 676, 52
Devices	B2104	47.5x47.5						52, 650, 64	104, 598, 64
	D1924	45x45							156, 676, 52
	F1924	45x45					104, 520, 56		104, 624, 64
_	Notes:								20 1, 02 1, 01

Notes:

1. Certain advanced configuration features are not supported in the KU025. Refer to the Configuring FPGAs section in DS890, UltraScale Architecture and Product Overview.

2. GTY transceivers in KU095 devices support data rates up to 16.3Gb/s.

3. Packages with the same package footprint designator, e.g., A2104, are footprint compatible with all other UltraScale devices with the same sequence. See the migration table for details on inter-family migration.

4. Maximum achievable performance is device and package dependent; consult the associated data sheet for details.

5. For full part number details, see the Ordering Information section in DS890, UltraScale Architecture and Product Overview.

6. See UG575, UltraScale Architecture Packaging and Pinouts User Guide for more information.

7. GTH transceivers in A784, A676, and A900 packages support data rates up to 12.5Gb/s.

8. 0.8mm ball pitch. All other packages listed 1mm ball pitch.

Page 2

© Copyright 2013–2016 Xilinx

EXILINX > ALL PROGRAMMABLE.

56