
Ideas for using  
Cryptography and Blockchain  

to extend computing resources
Lindsey Gray
20 April 2018

Lindsey Gray, FNAL

Ways of Amassing Compute Power

 2

Grid Computing

Tier 1

Tier 2
Tier 2 Tier 2

Tier 3

Tier 3Tier 3
Tier 3

highly centralized
data-local highly centralized

have to ship data

outbound data
particularly expensive

Cloud Computing

Decentralized
Computing

possibility for data locality
or cheap transport

actually other  
people’s computers?  

How to trust?

cloud without a company

governance/authorship
through blockchain?

Possibly very interesting
for MC production.

Lindsey Gray, FNAL

Monte Carlo Use Cases
๏Random Oracle

• An object in a network that
takes some input and gives a very
random output

• Essentially a good hash function

๏Multiple random oracles may
collective sign some dataset
they’ve contributed to

• Using variants of elliptic curve
encryption it is possible to set a
threshold at which bad actors
may contribute to computation

• Enables collective agreement

 3

Random Oracle Test Network from Dfinity

Random Oracle
 Node

Processing
Nodes

Monte Carlo Generators also fit the properties of a Random Oracle.  

We could use a similar iteratively signed network to generate MC events
where statistical independence and trustability is enforced by the

computation model, hence we could trust random nodes!

Lindsey Gray, FNAL

Reconstruction/Analysis Use Cases

 4

White Paper (Draft v.4.1.2) Coronai

Table 3.1: Expected computational overhead due to verification in the Coronai network.
The first columns compare the asymptotic runtime to the asymptotic verification time. The
Task proportion column has an estimate of the fraction of the network workload that the
given computation will consume early on. The Overhead column’s task subcolumn gives
the verification overhead for the row’s task (relative to the runtime of the task itself) given
assumptions about the task size described in the footnotes, and the network subcolumn
multiplies that by the Task proportion column to obtain an overhead across the entire
network. We find an overall weighted sum overhead of 82.5%, with the majority of that due
to TrueBit-style computations. Excluding the 3% of computation estimated to be TrueBit,
we obtain a combined overhead of 0.0004%.

Problem Example Cost Task Overhead
Verification Runtime proportion task network

Matrix Multiplicationa) O(n2) O(n2.6) 2.0% 2.51 · 10�4 5.02 · 10�6

ML Trainingb) O(WS) O(IWS) 50.0% 5.00 · 10�5 2.50 · 10�5

VF-SPARKc)
O(log(n)) O(n) 40.0% 9.88 · 10�4 3.95 · 10�4

NP-complete problem O(1) O(2n) 5.0% - -
CFDd)

O(n) O(C · n) 0.0% 5.00 · 10�2 -
Image Renderinge) O(m) O(n2 ·m) 0.0% 1.53 · 10�5 -

TrueBitf) O(n)g) O(n) 3.0% 2.75 · 101 8.25 · 10�1

Sum of Verification overhead 8.25 · 10�1

Sum of Verification overhead excluding TrueBit 4.38 · 10�4

a) Assume matrix size N = 1000 000

b) With I as number of training iterations, W as the number of weights, S as the size of the training/test

set. Assume 20 000 training iterations

c) Assume 3600 memory snapshots (runtime of 1 hour, a memory state snapshot every second)

d) Given grid size n and C as the general complexity of solving CFD, e.g. convergence iterations, etc.

e) Image size n = 256 and verification using m = 100 random pixels

f) Assuming a 2700% verification tax

g) Duplication of work plus verification communications is O(n+ log(n)) = O(n)

70

White Paper (Draft v.4.1.2) Coronai

Requestor Worker Data ValidatorChallenger

A Challenger reads input, output, and task description

Input data is published

Worker reads the input data

Worker publishes ths result

If challenger doesn't agree with the work,
a noti�cation of dispute is issued to hold back on the payout

The Challenger prepares the input to the judge script,
possibly in (forced) collaboration with the worker

The Challenger presents the evidence
and judge script to the validator

The validator reads data as needed
from the blockchain/ipfs

The validator rules on the dispute and publishes
the decision

General Veri�cation Data Flow

Figure 3.1: The flow of events for verification of work. In the plot, “Data” refers to the
blockchain as well as IPFS files referenced from the blockchain.

verdict on proper performance. The sequence of communications from the commitment to

dispute resolution by validators is shown in Fig. 3.1.

There are a variety of verification strategies possible for computational work. Major

categories are probabilistic verification, verification by repetition, and mathematically exact

verification among them.

Below, we discuss incentives, provide examples of verification methods, and compute

overheads.

56

๏Verifiable computation

• Cryptographically verifiable
algorithms

๏Coron.ai

• blockchain startup
- lead by folding@home developers

• API for implementing verifiable
computing
- BLAS with cryptographic verification

• tunable levels of verification
- remove overhead on known trusted

nodes

• cloud-like structure, benefits from
containerization efforts

๏Aim to try implementing Kalman
filter within verifiable computing API

• First try in two weeks, sitting with
developers

Lindsey Gray, FNAL

Decentralized Data Stores

 5

IPFS Architecture ๏How to store distributed data in a safe and
effective way?

• Prevent tampering, maintain fidelity of data

๏IPFS

• Essentially git turned into a file system

• Aim is embedded history, self-consistency

• Directory structure as merkel trees
- kind of similar to cvmfs

๏Tahoe-LAFS “least authority filesystem”

• FUSE mounted, similar to CVMFS, testing
currently ongoing to ~0.5 PB

• Tunable block-by-block erasure encoding

• File are split up into chucks and reassembled
as requested, all stored data encrypted
- Similar to bittorrent but everything is encrypted

๏Both have objectivity and could be used as
layers beneath existing tools to tap
decentralized resources

Lindsey Gray, FNAL

Outlook

๏This is all very new and exploratory

• The number of available computers on the planet is huge, could we
access them?

• Need to build up understanding of cryptographic models

• Must maintain low overhead otherwise acquired resources don’t
scale well

๏The main problem is ensuring to ourselves that code has been
executed in the way that we want it on the data we expected

• Random oracle networks and collective signing -> MC

• Verifiable computing -> trustable algoritms (e.g. Kalman Filter)

• Decentralized / encrypted datastores

๏Notice I didn’t actually mention blockchain that much

• It’s not intrinsic to this process, the cryptographic encapsulation of
our algorithms and data is what matters first

• More and more it seems that blockchain could be a way to govern
such an amorphous computing infrastructure or to provide incentives

 6

