Fermilab **BENERGY** Office of Science

Simulation Directions

Soon Yung Jun (Physics and Detector Simulation Group) Computing R&D Micro-Retreat Apr 20, 2018

Directions by the Community

- Geant4: multi-threading capable since 10.0 event level parallelism
 - Sub-event (particle) level multithreading (Grid, Cloud, HPC systems)
 - Revise production threshold and refactor transportation (by particle type)
- GeantV: alpha version available (vectorized geometry, scalar EM)
 - Fine-grain track level parallelism aiming for 2-5 speedup (locality+SIMD)
 - VecGeom is adopted by CMS and beta (EM vectorization) is underway
- Other R&D activities
 - Fast simulation: parameterization and Machine/Deep learning
 - Modularization: task level applications, vector libraries (VecCore)
- General strategies: Improve and extend functionalities while keeping user's interfaces as stable as possible
 - <u>Detector Simulation CWP paper (HSF)</u> (draft) define a roadmap by the whole international simulation community
 - A summary <u>talk</u> by Daniel Elvira at Joint WLCG and HSF workshop (26-28 March, 2018, at Napoli)

Challenges: SIMD (Vectorization) and SIMT(GPU)

- End-to-end parallelism using SIMD/SIMT architectures is very hard for detector simulation – Hello to Amdahl
 - Path dependent simulation chains (sequential, branches)
 - Stochastic processes and final state samplings (non-deterministic)
 - Memory intensive: low FLOPS/(memory transaction)
- Vectorization (SIMD)
 - − Both hardware and software are moving-targets: Ex. KNL \rightarrow novel architectures and explicit SIMD instructions \rightarrow c++20
 - scalability with dynamic scheduling should be proved
- Co-processors (many cores, massively many cores)
 - GPU+nvlink: off-load overhead (even for DL)
 - Target special applications (reuse-data and arithmetic intensive)
 - Ex. Neutron transport, Optical photons, EM shower, ...
- Strategies: $R&D \rightarrow Geant4 \rightarrow support Experiments$

R&D for Near-term and Far-future

- ML/Deep Learning for simulation (on-going or proposed)
 - Generative adversarial network for calorimeter simulation (CaloGAN)
 - Physics awareness ML techniques (cross sections, interactions)
- Challenges for DL supremacy in "HEP detector simulation"
 - Training by limited hyper-parameters (even with GAN) may not be good enough: ML/DL vs. parameterization (domain knowledge)
 - Explore more advanced architectures: GAN+Adversarial auto-encoder
 - Questions: large latent space and scaling on HPC systems (I/O)
- Quantum computing
 - Most models are quantum processes (ex. MSC, Compton, INCL, ...)
 - However, hard to realize output (quantum superposition with coherent random processes → macroscopic collapse): a lot of qubits and hard to achieve quantum supremacy (w.r.t classical approach)
- Strategies: open to novel ideas and push boundaries

Summary: Detector Simulation R&D

• Simon's gate for Simulation R&D

- IParallelism> = (R&D operators) $\frac{|Challeges>+|Opportunities>}{\sqrt{2}}$

- Covert challenges (software) and control opportunities (hardware)
- Amplify performance gain before realization (optimization)
- Vigorous and diverse R&D program underway along the line established in the CWP roadmap and work is performed within the experiments or in community organized R&D teams (from the Daniel's summary talk)

🚰 Fermilab