

Overview of the SPS LLRF upgrade

Gregoire Hagmann (CERN) Philippe Baudrenghien (CERN) Javier Galindo (CERN, UPC) Wolgang Hofle (CERN) Gerd Kotzian (CERN) Mattia Rizzi (CERN) Javier Serrano (CERN) Lorenz Schmid (CERN) Arthur Spierer (CERN) Tomasz Wlostowski (CERN)

CERN Accelerators Complex

CERN

SPS RF Upgrade 2019-2020 (LS2)

High Lumi LHC Beam requirements

- Proton [1]:
 - Doubling intensity $\rightarrow 2.5 \cdot 10^{11} \text{ p+/bunch}$
- lons [2]:
 - 50ns bunch spacing \rightarrow slip stacking
 - long injection plateau (~40s) \rightarrow low noise

Main limitations

- Beam-loading
 - V_{RF} =1MV, ~2MV beam induced
- Longitudinal instabilities (impedance)

SPS RF Upgrade 2019-2020 (LS2)

RF systems :

- $4x \ 200MHz \ cavity \rightarrow 6 \ cavities$
- 2x 800MHz cavity

Fig3 – SPS Power upgrade

SPS 200MHz Cavities

- 4 Travelling wave cavities (TWC200)
- → Splitted into 6 cavities after LS2 (Better compromise with beam loading & Cavity Voltage)

Drift tubes structure

Fig4 – SPS TWC200

SPS 800MHz Cavities

2x 800 MHz Travelling wave cavities (Tunnel) 4x 60kW IOT amplifiers per cavity (Surface)

Center freq	800.888MHz
Phase advance per cell	π/2
Group velocity v_g/c	+0.035
Cell length	93.5 mm
Total length L (37 cells)	3.460 m
Series impedance R ₂	$0.647 M\Omega/m^2$

Disc-loaded structure

$$V_{800} \cong \frac{V_{200}}{10}$$

Fig5 – SPS TWC800

LHC proton beam (2-3.1010 protons/bunch) unstable without 800MHz system

April 2018

Fermilab - slip-stacking

SPS 800MHz Cavity Voltage

SPS 800MHz Vector Sum

Fig7 – RF Combiner

Fermilab - slip-stacking

SPS LLRF Upgrade

Fig9 - Current SPS Beam Control Systems

SPS LLRF Upgrade

Current system :

- NIM, Custom 6U Europa crate, VME
- Mostly analog
- Some designs from 1970s
- Only electronics for 4 cavities at 200MHz
 - (6 cavities installed after LS2)
- Lack of control
 - No cycle-cycle settings (PPM)
 - No remote control, no built-in diagnostic
 - Very time-consuming setting-up

Fig10 - Current SPS 200MHz RF feedbacks

Upgrade foreseen in LS2 (2019-2020)

- Beam loading compensation MUST be improved to cope with 2x I_{BEAM} (HiLumi LHC)
- Bunch per Bunch Beam Phase & Radial position measurement → 5-10GSPS
- Fixed-frequency acceleration (FFA) for ion acceleration \rightarrow **FPGA**
- Fixed-frequency sampling clock (lower noise) \rightarrow COTS
- Deterministic serial link for RF frequency distribution → White-Rabbit
- Momentum slip-stacking for 50ns ion bunch spacing, → SoC (FPGA+ARM, eg: ZYNQ)

SPS LLRF Architecture

CERN F

Fig11 – SPS LLRF Architecture April 2018

SPS LLRF Clock Generation/Distribution

Fixed-frequency sampling

- Big paradigm change for CERN synchrotrons
- Simplify clocking scheme
- Better noise performance (clock)
- Higher complexity in signal processing for bunch synchronous processing

White-rabbit support

- Reconstruction of sampling clock
 from White-Rabbit
- Aim for <130dBc/Hz (from 100Hz offset range)
- Scalable system

LLRF Backplane (Desy) compatible

CLKA & CLKB are 1-PPS aligned and independent CLKA frequency: 62.5MHz/125MHz/250MHz/500MHz CLKB frequency: 62.5MHz/125MHz/250MHz/500MHz

LO & REF frequency: up to 230 MHz CAL is not generated nor distributed. LO or REF can be programmed to generate a CAL signal

Fig15: eRTM for SPS LLRF (Courtesy Mattia Rizzi)

Fermilab - slip-stacking

SPS LLRF Beam control

Beam based loops

- B-field reception (White-rabbit)
- RF freq calculation (FPU)
- RF freq distribution (White-rabbit)
- Synchro Loop
- Phase loop
- Radial loop
- Cogging /Rephasing (extr. to LHC)
- Slip stacking (lons 50ns)

AMC:

- FMC Carrier, 2x FMC (HPC)
- SoC (FPGA+ARM)
- White-Rabbit (2x)
- MTCA.4

RTM :

- 4x SFP+, 3xQSFP+
- MTCA.4.1 (optional)

Fig16: Beam control in MTCA.4 (Courtesy A. Spierer)

SPS LLRF Beam Phase, Radial Position, Intensity

- Signals received from beam position monitors typically cover several GHz
- SPS RF frequency: 200 MHz \rightarrow bunch spacing 5 ns
- Direct sampling of beam signals with fixed sampling clock at >> GSPS
- Beam synchronous feature extraction in digital
- Beam instantaneous frequencies received via WR link
- System clocks are deterministic for every cycle ("absolute time", based on WR)

- Input channels ≥2
- Sampling rate ≥ 5 GSPS
- Analog BW ≥ 1 GHz
- Vertical Res. ≥ 8 bits
- Data output 200 MSPS
- Clocks derived from WR (125 MHz)

SPS LLRF MTCA.4.1 Equipment

Fig20: NAT-LLRF-Backplane (DESY, N.A.T. GmbH)

CERN SPS-LIU Schedule

- Q1 2018: MTCA Cavity controller tests on 200MHz cavity
- Q2/Q3 2018: Prototype HW for Beam control (FMC carrier) MTCA HW for Beam phase/Intensity measurement
- End 2018: CERN Accelerator complex stop \rightarrow Long Shutdown 2
- 2019-2020 : LLRF Upgrade
- Q4 2020 : LLRF commissioning
- Q1/Q2 2021: Beam commissioning & Run 3 $0.55A DC \rightarrow 1.1A DC$ (HiLumi LHC)

April 2018

Fig24 – One Turn Delay feedback with triple comb

MIMO feedback

CERN

References

 J. Coupard & al. LHC INJECTOR UPGRADE – Technical Design Report – Volume I: Protons, CERN-ACC-2014-0337, 15.12.2017
 J. Coupard & al. LHC INJECTOR UPGRADE – Technical Design Report – Volume II: Ions, CERN-ACC-2016-0041, 01.04.2016
 T. Argyropoulos, MOMENTUM SLIP-STACKING OF THE I-LHC BEAM IN THE SPS, talk at LIU-SPS BD WG, CERN, 27.02.2014
 G. Hagmann & al., SPS LLRF Upgrade project, LLRF Workshop 2017, Barcelona, Spain, Poster P-9

