UPDATE ON SIMULATION ENERGY DEPOSITIONS

Wesley Ketchum (FNAL)

REVIEW

- Needed to add option for storing EnergyDepositions in LArG4 step for uboone production release
 - Previously reported on idea/status here

Critical points:

- Define energy deposition object
- Hooks into LArG4 for storing energy deposits
- Downstream modules to do electron/photon propagation

Talk today

- Review what has now been merged to develop
 - feature/wketchum_LArG4Refactor_develop on lardataobj and larsim
- Discuss what is needed "operationally" for experiments

ENERGY DEPOSITION OBJECT

- Using the object created by Bill and Hans for LArG4 refactoring project
- Added pdg code of particle
 - Enable scintillation by particle type without lookup to MCParticle list

```
int
             numPhotons:
                           //< of scintillation photons
int
             numElectrons; //< of ionization electrons
float
                           //< energy deposition (MeV)
             edep:
Point t
             startPos:
                           //< positions in (cm)</pre>
Point t
             endPos;
double
             startTime;
                           //< (ns)
             endTime;
                          //< (ns)
double
int
             trackID;
                           //< simulation track id
int
             pdgCode;
                           //< pdg code of particle to avoid lookup by particle type later
```

 Side note: this now lives on several branches of lardataobj I think, so we're going to have to be careful about merges/conflicts

HOOKS IN LARG4

- Energy depositions are being tracked and stored in OpFastScintillation process
 - This is a change from "LArVoxelReadout"
 - Requries "FastOptical" physics to be enabled
 - Presumably this changes with LArG4 refactoring
- Important: energy depositions stored in different instance labels by parent volume in current (MicroBooNE-centric) implementation
 - If G4 volume name contains "TPCActive", stored in "TPCActive" instance label
 - If it doesn't, stored in "Other" instance label
 - → Cryostat
- How do other experiments want this?
 - Hint: some instance labeling on which TPC and which cryostat?

NEW OPTIONS IN LARG4 PARAMETERS

- FillSimEnergyDeposits
 - This turns on/off storing the energy deposits, as described
 - Default is false (don't do it)
- NoElectronPropagation
 - This turns on/off doing the electron propagation in the default way, inside LArVoxelReadout and producing SimChannel collection
 - Default is false (leave it on)
- NoPhotonPropagation
 - This turns on/off doing the photon propagation in the fast optical physics in the normal way and producing SimPhotons collection
 - Default is false (leave it on)

ADDITIONAL UNRELATED OPTION!

- Added "SparsifyTrajectories" option in LArG4 module
- Calls "SparsifyTrajectories()" function for MCParticles put into the output collection
 - Calls "Sparsify(0.1)" on MCTrajectory underneath, which removes interior trajectory points that lie within some tolerance of neighboring points (0.1→1 mm)
- Significantly (factor ~2?) reduces output MCParticle collection size
- Improvement: allowing the tolerance desired to be passed in as an option
 - Requires new nusimdata release

IONIZATION AND SCINTILLATION

- I do not calculate ionization electrons and scintillation photons in the LArG4 stage
 - Set to "-1" on both
- I have separated out ISCalculationSeparate into a standalone algorithm in larsim/lonizationScintillation
 - I've dropped the ISCalculation base class here ... so it's a single purpose standalone algorithm
 - Should be turned into art::Tool for future
- This algorithm will get used in electron and photon propagation
 - Initialized with LArProperties (scint yield), DetectorProperties (Efield), SpaceCharge, and LArG4Properties (recombination)

MODIFIED ENERGY DEPOSITIONS

- WireCell simulation does not incorporate space charge → must be handled externally
 - Correlated apparent position offsets and differences in recombination
- New module in ElectronDrift/ShiftEdepSCE_module.cc
 - Input: edeps
 - Output: edeps with shifted positions based on space charge service and n_electrons/n_photons filled from ISCalculationSeparate Alg

ELECTRON PROPAGATION

- Bill Seligman wrote a refactor of the electron drifting that was being done in LArVoxelReadout
 - larsim/ElectronDrift/SimDriftElectrons_module.cc
- I've modified it only slightly
 - Use the ISCalculationSeparate algorithm
 - Note: should do an option for using electrons/photons in object if they're there...
 - Ignore energy deposits behind the first induction plane (as was being done before...)
 - Stripped anything for associations
- This should not use modified energy depositions
- Output is SimChannels, which should be same as previous simulation

PHOTON PROPAGATION

- I wrote new module to do photon propagation via visibility library
 - larsim/PhotonPropagation/ PhotonLibraryPropagation_module.cc
 - Uses ISCalculationSeparate alg to get number of photons, and then applies library
 - Options for inputting RiseTime
 - Fast and slow risetimes currently set to -1.0 by default (→ no rise time)
- This should not use modified energy depositions
- Output is SimPhotons

NOTES ON ALL THESE MODULES

 These were made and validated against v06_26_01_XX larsoft with MicroBooNE

Things lacking/potentially at issue

- New added modeling/complications in photon simulation that I have not included in the standalone module
- BackTracker for photons and charge won't work well without options to specify input labels
 - BackTracker assumes same module label for MCParticles and SimChannels/SimPhotons
 - Photon BackTracker completed untested
- Overall testing for other experiments
 - I assume it won't work out of box and will need some tests/tweaking

Points for discussion

- How will energy depositions be stored/labelled/handled for best use downstream
- What are the additional workflows we will pursue?
 - Additional optical simulation, like Cherenkov light
 - Moving energy depositions inside or among detectors?
 - Would require rerunning G4 when energy deposition "leaves" volume
 - Mixing modules?
- How does this properly evolve under other assumptions?
 - DUNE SP?
 - Dual-phase?