

Changes in LArPandoraContent_v03_12_00

Steven Green on behalf of the Pandora Team 8th May 2018

Overview

Three changes in larpandoracontent v03_12_00:

- 1) Addition of an Interface to Adaptive Boost Decision Trees (BDT):
 - Allows Pandora to apply the results of a trained BDT in the reconstruction.
 - Machine learning models will be trained using the scikit-learn python package and only applied in Pandora.
 - Only used for ProtoDUNE-SP.
- 2) Addition of Test Beam Particle Creation Algorithm:
 - Relabelling of Pandora outputs for test beam use case.
 - Only used for ProtoDUNE-SP.
- 3) Minor change to Slicing Configuration:
 - Unify the PFParticle track/shower characterisation approach between slicing and neutrino reconstruction.
 - Minor change to reconstruction of cosmic-rays.
 - O Used for ProtoDUNE-SP and MicroBooNE.

Adaptive Boost Decision Trees

- Aim: Extend the use of Multivariate techniques inside Pandora.
- New changes unify the application of BDTs and Support Vector Machines (SVMs) in the reconstruction.
- O Use of Machine Learning tools inside Pandora is more generic.
- O Machine learning models will be trained using the scikit-learn python package and only applied in Pandora.
- O Pandora now uses a BDT approach for the Beam Particle ID in ProtoDUNE.

All Remaining Particles
Reconstructed and
Tagged as Cosmic Rays

Reconstructed and Tagged

Test Beam Particle Creation

O Aim: Repackage the Pandora output to be more intuitive for the test beam use case.

O Neutrino PFParticles now relabelled as test beam particles, either e- or π^+ depending on whether incoming particle is track or shower like.

Default Reconstruction

Reconstructed Parent Particle: Neutrino

Vertex: Interaction Vertex

Hits: No Visible Hits

Daughter Particles:

4 x p,

 $2 \times \mu^+$

 $2 \times \pi^{-}$

 $1 \times \pi^+$

Test Beam Particle Creation:

Reconstructed Parent Particle: π^+

Vertex: **Start Vertex**

Hits: π^+

Daughter Particles:

4 x p,

 $2 \times \mu^+$

 $2 \times \pi$

Test Beam

Direction

Which repositories are affected?

For each of these repositories please see: feature/larpandoracontent_v03_12_00

larpandoracontent

- Contains the new c++ described on the previous slides.
- Alongside the new BDT beam particle id, the previous cut based approach is retained.

larpandora

- XML-only change.
- Minor update to the slicing configuration.

•dunetpc

- XML-only change.
- Pandora reconstruction for ProtoDUNE now uses the test beam particle creation algorithm.

Which repositories are affected?

- •dune_pardata
 - Thanks to A.Himmel and D.Adams, the trained MVA data for the beam particle ID is inside dune_pardata/PandoraMVAData.
 - This exists in version v01_29_00 of dune_pardata, which is in dunetpc version v06_75_02 onwards.
- All feature branches have been pushed to Redmine and tested in LArSoft.

Thank you for your attention. Questions?

Pandora Team

Pandora is an open project and new contributors would be extremely welcome. We'd love to hear from you and we will always try to answer your questions!

Contact details:

Framework development

John Marshall (<u>marshall@hep.phy.cam.ac.uk</u>) Mark Thomson (<u>thomson@hep.phy.cam.ac.uk</u>)

LAr TPC algorithm development

John Marshall Andy Blake (a.blake@lancaster.ac.uk)

MicroBooNE

ProtoDUNE

Steven Green (sg568@hep.phy.cam.ac.uk)

Lorena Escudero (escudero@hep.phy.cam.ac.uk)
Joris Jan de Vries (jjd49@hep.phy.cam.ac.uk)
Jack Anthony (anthony@hep.phy.cam.ac.uk)
Andy Smith (asmith@hep.phy.cam.ac.uk)

Please visit https://github.com/PandoraPFA

Consolidated Reconstruction: Overview

