Photon Detector Dynamic Range

Alex Himmel, Martiza Delgado SP-PDS Electronics Meeting May 15th, 2019

Introduction

- Low end of dynamic range is easy: 1 PE.
 - We are looking at a higher threshold to trigger readout, but we still want to see single PEs in the later part of triggered waveforms.
- Now, for the high end...
- We looked at simulated beam neutrino events, and looked at the maximum number of photons seen on each PDS channel.
 - Assumes each detector has effective area XX cm2, equiv. to YY% efficient X-ARAPUCA.
 - Assumes 4 readout channels/bar.
- Looked in different time ranges which bracket the need:
 - 12 ns one 80 MHz tick.
 - $-1 \mu s$ ~the response time of the SiPM.
- Neither of these is quite right since later signals will be on top of somewhat decayed earlier signals.

Results

- What is plotted is the fraction of events whose peak photons is below the X-axis value.
 - Note that the axis is in thousands.

Saturation Rate	12 ns	1 µs
10%	870	2,250
1%	3,850	9,550

Conclusions

- I am confident we can tolerate a little bit of saturation in the analysis.
 - Why?
 - Because the TPC thinks they can tolerate 10%.
 - I can also imagine at least two correction algorithms.
 - But how much is too much?
- Drawing really crisp conclusions here is tough, for a few reasons:
 - We don't have an analysis of beam event resolution yet.
 - We don't have a correction algorithm for saturation developed yet.
 - The photon numbers scale with detector efficiency, which is not known to high precision yet.
- But, with all that, what can we say?
 - If we can get away from the rapidly varying part of the curves for reasonable cost, then I think this is a non-issue.
- Squinting, I think we need to see **a few thousand photons**.
 - I would call 2k borderline and 10k overkill.
 - Your interpretation may vary.
- If getting to even 2,000 photons is costly, then I think we will need to spin up some more sophisticated studies to address just how badly its needed.