
LArSoft Coordination Meeting 2018-05-22

Chris Green, FNAL.

Status of Spack Development / Migration



• Replace UPS with an off-the-shelf build / packaging / deployment system based on 
Spack.

• Support SIP-enabled MacOS systems.
• Provide tools for developers of experimental software packages (cf cetbuildtools, 
mrb).

• Provide facilities for release preparation, management and deployment (cf
buildFW, pullProducts, copyToSciSoft, Jenkins scripts).

• Continue to provide relocatable binary distributions and satisfy other requirements 
that people have relied on with the current suite of tools.

Goals

2018-05-22 LArSoft Coordination Meeting2



• De facto standard tool for HPC.
• Python-based (2 or 3); “specs” -> Python classes.
• Spack “installation”: Spack code + specs from one (“builtin”) or more “Spack

repos” + installed packages based on those specs.
• Specs do not generally specify exact versions (although they can). A particular 

build of a dependency tree can specify versions.
• “Variants” control configurable aspects of a spec such as language standard, 

optional features.
• Can satisfy dependencies from the system rather than building the world.
• All interoperating packages are tied to a compiler (e.g. Clang 5.0.1, GCC 7.3.0).
• Specs control build instructions, setup behavior, dependencies – essentially part of 

the installed system as well as describing the build environment.
• A package built in a particular way has an unique hash.

Spack overview

2018-05-22 LArSoft Coordination Meeting3



• Requirements, plans.
• “Buildcache” (Patrick G.): binary packages suitable for relocation / deployment.
• ”Spackdev” (Jim A.): Spack-based multi-package development / test environment.
• “Spack chains” (Jim A.): manage a hierarchy of Spack installations.
• “Cetmodules” (Lynn, Chris): UPS-less cetbuildtools.
• New / improved specs for external packages, other contributions to Spack proper in 

various stages of discussion / approval (Chris, Lynn, Patrick).

Achievements so far

2018-05-22 LArSoft Coordination Meeting4



• Produce an “MVP” – Minimum Viable Product:
– Software stack with one OS / compiler / C++ standard / optimization level to 

allow experiments to, well, experiment (SLF7 / GCC 7.3 / C++17 / prof).
– Keep track of issues along the way but achieve the narrow goal first and go back 

for the others later.
– Everything built “our way” to maximize realism & compatibility for experiments.
– Use system-available packages via packages.yaml where possible.
– First demonstration of Cetmodules.
– Provide art, gallery and dependencies thereof.
– NOT “release”-oriented.
– NOT a collection of every piece of software every experiment is likely to need.
– NOT a solution to every problem.
– NOT a guarantee that every remaining problem can be solved.

Current efforts

2018-05-22 LArSoft Coordination Meeting5



• Done (external packages): Boost, and everything up through Root (except Pythia6, 
for now), as currently built (as far as possible).

• Done (art suite): cetlib_except, cetlib building based on art-v2-develop branches, 
with all tests passing.

• Upcoming: fhicl-cpp, messagefacility should be straightforward; canvas may 
require work on dictionary building / finding facilities.

• Upcoming: shakedown of Spackdev with art suite.

MVP: status

2018-05-22 LArSoft Coordination Meeting6



• Everything is currently tied to the compiler, including things that don’t need to be 
(e.g. C and Python packages, data-only packages, etc.).

• Unclear how to manage multiple concurrent releases with suitable package reuse.
• Lots of glue to keep things consistent, easy to organize and manage everything

from development through release preparation through distribution / deployment.
• More package specs (Geant4, etc., etc.).
• Experiment / Collaboration signoff, migration plan.

Post-MVP

2018-05-22 LArSoft Coordination Meeting7


