Phase Calculation and Systematic Effects

Jeremiah Mitchell Northern Illinois University

Outline

- Overview of phase difference calculation
- Relevant systematics
- Calculation for simple 1 atom model
- Discussion

Assumptions

- Single atom
- Under influence of gravity and laser only
- Semi-classical picture
 - Propagation phases are calculated classically
 - Laser phase imprinting and separation phase are treated quantum mechanically

Phase Difference

Total phase, $\Delta \phi$, is decomposed into 3 parts

- Propagation phase
- Laser phase
- Separation phase

Propagation Phase

The phase built up while the state travels along the upper and lower arm of the interferometry paths i.e. the excited state = upper, ground state = lower.

$$\Delta \phi_{\text{propagation}} = \sum_{\text{upper}} \left(\int_{t_i}^{t_f} (L_c - E_i) dt \right) - \sum_{\text{lower}} \left(\int_{t_i}^{t_f} (L_c - E_i) dt \right)$$

Laser Phase

The phase imprinted on the atom during interaction

$$\Delta \phi_{\text{laser}} = \left(\sum_{j} \pm \phi_L(t_j, \mathbf{x}_u(t_j)) \right)_{\text{upper}} - \left(\sum_{j} \pm \phi_L(t_j, \mathbf{x}_l(t_j)) \right)_{\text{lower}}$$

$$\phi_L(\mathbf{x}, t) = \mathbf{k}_{\text{eff}} \cdot \mathbf{x} - \omega_{\text{eff}} t + \phi_{\text{eff}}$$

Separation Phase

Phase difference caused by a displacement in the atom states at the output port.

$$\Delta \phi_{\text{separation}} = \langle \mathbf{p} \rangle \cdot \Delta \mathbf{x}$$

 $\Delta x \equiv x_l - x_u$

Equality of Detection Outputs

The total phase difference at the outputs A_1 and A_2

$$\Delta \phi_1 \equiv \theta_u - (\theta_l - \phi_L(\mathbf{x}_l)) + \bar{\mathbf{p}}_1 \cdot \Delta \mathbf{x} + \Delta \mathbf{p} \cdot (\mathbf{x} - \bar{\mathbf{x}})$$

$$\Delta \phi_2 \equiv (\theta_u + \phi_L(\mathbf{x}_u)) - \theta_l + \bar{\mathbf{p}}_2 \cdot \Delta \mathbf{x} + \Delta \mathbf{p} \cdot (\mathbf{x} - \bar{\mathbf{x}})$$

$$\bar{\mathbf{p}}_1 = \frac{\mathbf{p}_u + (\mathbf{p}_l - \mathbf{k})}{2}$$

$$\bar{\mathbf{p}}_2 = \frac{(\mathbf{p}_u + \mathbf{k}) + \mathbf{p}_l}{2}$$

$$\Delta \phi_1 - \Delta \phi_2 = \phi_L(\mathbf{x}_l) - \phi_L(\mathbf{x}_u) + \bar{\mathbf{p}}_1 \cdot \Delta \mathbf{x} - \bar{\mathbf{p}}_2 \cdot \Delta \mathbf{x} = \mathbf{k} \cdot \Delta \mathbf{x} - \mathbf{k} \cdot \Delta \mathbf{x} = 0$$

Systematic Effects

Lagrangian for our simple model

- r(t) is the position, Ω is the frame rotation velocity
- Taylor expand ϕ (gravitational potential)

$$L = \frac{1}{2}m(\dot{\mathbf{r}} + \mathbf{\Omega} \times (\mathbf{r} + \mathbf{R}_e))^2 - m\phi(\mathbf{r} + \mathbf{R}_e) - \frac{1}{2}\alpha\mathbf{B}(\mathbf{r})^2$$

Systematic Effects

Numerically calculated systematics

_

- Earth's rotation
- Gravity perturbations
- Magnetic fields

	Phase shift	Size (rad)	Fractional size
1	$-k_{ m eff}gT^2$	-2.85×10^8	1.00
2	$k_{\mathrm{eff}}R_e\Omega_u^2T^2$	6.18×10^{5}	2.17×10^{-3}
3	$-k_{ m eff}T_{zz}\ddot{v}_zT^3$	1.58×10^3	5.54×10^{-6}
4	$\frac{7}{12}k_{\text{eff}}gT_{zz}T^4$	-9.21×10^2	$3.23 imes 10^{-6}$
5	$-3k_{\mathrm{eff}}v_z\Omega_y^2T^3$	-5.14	1.80×10^{-8}
6	$2k_{\mathrm{eff}}v_x\Omega_yT^2$	3.35	1.18×10^{-8}
7	$rac{7}{4}k_{ ext{eff}}g\Omega_y^2T^4$	3.00	1.05×10^{-8}
8	$-rac{7}{12}k_{ ext{eff}}R_eT_{zz}\Omega_y^2T^4$	2.00	7.01×10^{-9}
9	$-rac{\hbar k_{ ext{eff}}^2}{2m}T_{zz}T^3$	$7.05 imes 10^{-1}$	$2.48 imes 10^{-9}$
10	$\frac{3}{4}k_{\mathrm{eff}}gQ_{zzz}v_{z}T^{5}$	$9.84 imes 10^{-3}$	3.46×10^{-11}
11	$-\frac{7}{12}k_{\rm eff}Q_{zzz}v_{z}^{2}T^{4}$	$-7.66 imes10^{-3}$	$2.69 imes 10^{-11}$
12	$-\frac{7}{4}k_{\mathrm{eff}}R_e\Omega_y^4T^4$	$-6.50 imes10^{-3}$	2.28×10^{-11}
13	$-rac{7}{4}\hat{k}_{ ext{eff}}R_e\Omega_y^2\check{\Omega}_z^2T^4$	$-3.81\times10^{\text{-}3}$	$1.34 imes 10^{-11}$
14	$-rac{31}{120}k_{ m eff}g^2 Q_{zzz}T^6$	$-3.39\times10^{\text{-}3}$	$1.19 imes 10^{-11}$
15	$-rac{3\hbar k_{ ext{eff}}^2}{2m}\Omega_y^2T^3$	$-2.30\times10^{\text{-}3}$	8.06×10^{-12}
16	$\frac{1}{4}k_{\mathrm{eff}}T_{zz}^2v_zT^5$	$2.19\times10^{\text{-}3}$	$7.68 imes 10^{-12}$
17	$-\frac{31}{360}k_{\mathrm{eff}}gT_{zz}^2T^6$	$-7.53\times10^{\text{-}4}$	$2.65 imes 10^{-12}$
18	$3k_{ ext{eff}}v_y\Omega_y\Omega_zT^3$	$2.98 imes10^{-4}$	1.05×10^{-12}
19	$-k_{ m eff} \hat{\Omega}_y \hat{\Omega}_z y_0 T^2$	$-7.41 imes 10^{-5}$	2.60×10^{-13}
20	$-rac{3}{4}k_{ ext{eff}}R_eQ_{zzz}v_z\Omega_y^2T^5$	$-2.14\times10^{\text{-5}}$	7.50×10^{-14}
21	$rac{31}{60}k_{ m eff}gR_eQ_{zzz}\Omega_y^2T^6$	$1.47 imes 10^{-5}$	5.17×10^{-14}
22	$rac{3}{2}k_{ ext{eff}}T_{zz}v_z\Omega_y^2T^5$	-1.42×10^{-5}	5.00×10^{-14}
23	$-\frac{7}{6}k_{\mathrm{eff}}T_{zz}v_x\hat{\Omega}_yT^4$	$1.08 imes 10^{-5}$	3.81×10^{-14}
24	$-2k_{\mathrm{eff}}T_{xx}\Omega_y x_0 T^3$	$-6.92 imes10^{-6}$	$2.43 imes 10^{-14}$
25	$-rac{7\hbar k_{ m eff}^2}{12m}Q_{zzz}v_zT^4$	$-6.84 imes10^{-6}$	2.40×10^{-14}
26	$-rac{7}{6}k_{ ext{eff}}T_{xx}v_x\Omega_yT^4$	$-5.42\times10^{\text{-}6}$	$1.90 imes 10^{-14}$
27	$-rac{31}{60}k_{ m eff}gT_{zz}\Omega_y^2T^6$	4.90×10^{-6}	1.72×10^{-14}
28	$k_{ ext{eff}}T_{xx}v_z\Omega_y^2T^5$	$4.75\times10^{\text{-}6}$	1.67×10^{-14}
29	$rac{3\hbar k_{ m eff}^2}{8\pi}gQ_{zzz}T^5$	$4.40 imes 10^{-6}$	1.55×10^{-14}
30	$rac{31}{360} \overset{m}{k_{ eff}} \overset{m}{R}_e T_{zz}^2 \Omega_y^2 T^6$	$1.63\times10^{\text{-}6}$	5.74×10^{-15}

Table 4.1 Key

- Many of these are common mode and cancel out in a differential measurement scheme
- To note some important quantities
 - 1) Acceleration measurement (also intrinsic sensitivity of apparatus)
 - 2) Centrifugal force acting on the atom
 - 3,4) Gravity inhomogeneities
 - 6) Coriolis force

Systematic Effects

- After common mode cancellations
- Similar results for dual interferometers

	Phase shift	Size (rad)	Fractional size
1	$-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}\right)\hbar k^2 T_{rr}T^3$	1.66×10^{-2}	5.83×10^{-11}
2	$2\left(\frac{m85}{2k_{\text{eff}}\delta v_x\Omega_yT^2}\right)^{-10}$	3.35×10^{-3}	1.18×10^{-11}
$\frac{3}{4}$	$-k_{\text{eff}}T_{zz}\delta v_{z}T^{3}$ $-\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2}\right)\hbar k_{zx}^{2}\Omega_{x}^{2}T^{3}$	1.44×10^{-4} -5.40 × 10 ⁻⁵	5.05×10^{-12} 1.90×10^{-13}
5	$2\left(\frac{m_{85}}{-3k_{\mathrm{eff}}\Omega_y^2}\delta v_z T^3\right)$	-4.68×10^{-6}	1.64×10^{-14}
6 7	$-\kappa_{ m eff} I_{zz} \delta z T^2$ $-k_{ m eff} \delta y \Omega_y \Omega_z T^2$	8.93×10^{-7} -7.41 × 10 ⁻⁷	3.14×10^{-15} 2.60×10^{-15}
8 9	$\frac{3k_{\rm eff}\delta v_y\Omega_y\Omega_zT^3}{-\frac{7}{2\pi}\left(\frac{1}{2}-\frac{1}{2}\right)\hbar k^2 r \Omega_{\rm eff}v_yT^4}$	2.98×10^{-7} -1.61 × 10 ⁻⁷	1.05×10^{-15} 5.65 × 10^{-16}
10	$\frac{12}{8} \left(\frac{1}{m_{85}} - \frac{1}{m_{87}} \right) \hbar k_{\text{eff}}^2 g Q_{zzz} T^5$	1.03×10^{-7}	3.63×10^{-16}
11	$-\left(\frac{\alpha_{85}}{m_{85}}-\frac{\alpha_{87}}{m_{87}}\right)\hbar k_{\text{eff}}B_0(\partial_z B)T^2$	$-9.94\times10^{\text{-8}}$	3.49×10^{16}
12	$-2k_{\rm eff} T_{xx} \delta x \Omega_y T^3$	$-6.92\times10^{\text{-8}}$	2.43×10^{16}

[2]

Table 4.2 Key

- Although a differential measurement of different isotopes shows effect of differential measurements on the systematics
- Important terms here
 - 2) Coriolis force (largest contribution in differential measurements)
 - 3) Gravity gradients

Phase Calculation

- Followed Jason's method in his Thesis
- Used power series solution for trajectories of the atom
 - Solved Euler-Lagrange equations
- Computed 3 phase differences
 - Propagation phase
 - Laser phase
 - Separation phase
- Add them together for total phase difference

$$r_i(t) = \sum_n a_{i,n} (t - t_0)^n$$

Phase Calculation

- Done in Mathematica
- Can be converted to python easily for 1 atom case
- Discuss with Jason for further code necessary

Leading Order

- Coriolis term dominates others
- Gravity gradients become relevant as well

Other Noise

- Gravity gradient noise is also expected
- Seismometer measurements will give better estimate

$$h_{\rm GGN} = \begin{cases} \frac{G\rho_0 k_l}{2\pi f^2} \langle \xi_z \rangle \\ \frac{G\rho_0}{fc_R} \langle \xi_z \rangle \end{cases} ; \quad f \leq \frac{c_R}{2\pi L} \end{cases}$$

Conclusion

- The largest systematics have schemes for mitigation at 8-10 m scales
- 100m mitigation schemes are of great interest and will require time and effort during R&D