

Storage ring studies at the Muon g-2 Experiment

David Tarazona

University Advisor:

Martin Berz

Fermilab Mentors:

Mike Syphers

Diktys Stratakis

FNAL Accelerator PhD Program Budker Seminar

Contents

1. g-2 Storage Ring Simulation

- 2. Betatron resonances
 - Optimal configurations to increase statistics and reduce lost muons rates
 - HV~18kV peak as a probe to determine EQS misalignments
 - HV~17kV peak to understand interplay of magnetic and electric resonances
- 3. Tunes and Betatron frequencies
 - Measurements of tunes for model calibration
 - Betatron frequency time-evolution vulnerable to hardware damages
- 4. Momentum distribution and collimation
 - Special collimation to address beam momentum distribution

Snapshot of work progress

- -> "Lost Muons Traditional Scraping Studies." g-2 Beam Dynamics Workshop, November 2017
- -> "COSY Studies Lost muons with measured B-field and some oomph." g-2 Beam Dynamics Workshop, March 2018
- -> "Tune/Resonances"

 Plenary Talk Muon g-2 Collaboration Meeting, July 2018
- -> Other internal talks at g-2 Beam Dynamics meetings...
- -> "Transverse beam phase-space and dispersion measurement technique at Muon Campus at Fermilab"

ICAP Conference, October 2018...

-> "Muon losses from betatron resonances at the Muon g-2 Experiment at Fermilab"

CPO Conference, October 2018...

Muon g-2 Experiment: Measurement Principle

$$a_{\mu} \approx \frac{m_{\mu}\omega_a}{eB}$$

- $\omega_a = \omega_S \omega_c$ obtained from fit to the wiggle plot
- Goal of E989 is to measure a_{μ} to 0.14ppm precision or less
- Reduction of statistical and systematic uncertainties essential.

$$N(t, E_{th}) = N_0(E_{th}) \exp^{-t/\gamma \tau_{\mu}} \left[1 + A(E_{th}) \cos \left(\omega_a t + \varphi_a(E_{th}) \right) \right]$$

Muon g-2 Storage Ring: Simulation

Muon g-2 Storage Ring: Simulation-> COSY INFINITY

 Preparation of high-order transport map from Runge Kutta ODE integrator (use of Differential algebra) for symplectic tracking

$$\mathcal{M}(\vec{z}_0) = \vec{z}_f$$

- \vec{z} : array made of (x, a, y, b, l, δ) ray vectors
- \mathcal{M} : Map containing $(x|x^{l_{x1}}a^{l_{x2}}y^{l_{x3}}b^{l_{x4}}l^{l_{x5}}\delta^{l_{x6}})$, $(a|x^{l_{a1}}a^{l_{a2}}y^{l_{a3}}b^{l_{a4}}l^{l_{a5}}\delta^{l_{a6}})$, ...

Storage ring configuration

Muon g-2 Storage Ring: Simulation-> Injection Kicker

- Three kicker modules (1.27m long each) to ideally kick 10.8 ± 0.4 mrad at $\sim 90^\circ$ from injection point
- Current simulation recreates instantaneous kick at central kicker
- Measured time-dependent kicker pulse considered
- 75% of nominal kick and ringing signal after main kick in simulations to imitate behavior during first run

Muon g-2 Storage Ring: Simulation-> EQS

- Electrostatic multipole terms from EQS flat plates up to 20th order

$$\phi(r,\theta) = \sum_{j=0}^{\infty} r^{j} \left[a_{j} \cos(j\theta) + b_{j} \sin(j\theta) \right]$$

- Multipole terms from conformal maps method by Eremey V. and Martin B.
- Fringe fields falloff described with Enge functions coefficients from fitting the multipole term $M_{2,2}(s,r)$. $M_{2,2}$ obtained from 3D electrostatic potential calculation using an FFT transform along the circle of radius $R_{ref} = 3.6$ cm
- Mispowered EQS for scraping stage by superposition and rotation of mispowered plates with nominal EQS.

Muon g-2 Storage Ring: Simulation-> Magnetic Field

Present radial field differs from the 2016 measurements, after the radial field was adjusted using the surface coils in 2017.

Muon g-2 Storage Ring: Simulation-> Magnetic Field

- Measured B-field multipoles extracted from azimuth-independent fit of NMR trolley probes measurements
- Superimposed uniform vertical B-field, ESQ E-field and measured B-field multipoles represented as fine mesh of symplectic kicks applied to the map
- Multi-gaussian functions to include continuous multipoles amplitudes in simulation
- High-order multipoles stability over time of $\sim \pm 1$ ppm and azimuthally averaged dipole stability of less than 2ppm
- Previously tried to recreate measured B-field from azimuth-dependent data fit in midplane. Caveat: Midplane symmetry assumed.

Muon g-2 Storage Ring: Simulation-> Beam collimators

 Beam collimators to provide effective scraping of the injected beam to remove muons outside the storage region

 Simulation: If muon location is beyond collimators apertures at their corresponding azimuth positions, it is lost.

Muon g-2 Storage Ring: Simulation-> Initial beam dist.

- x, p_x/p_0 , y, p_y/p_0 and δ_p distributions at t=0 (at infl. exit) taken from BMAD sims

t distribution based on measurements.

- Initial distribution at t=0 (> 6M muons) generated after "inflating" low-statistics distributions, where for each original muon, 40 are randomly created within the vicinity of the original muon for the uniform range $[-\sigma/10,\sigma/10]$. This method preserves averages and correlations of the original distribution.

Muon g-2 Storage Ring: Simulation-> Stages

- We follow a sequence of stages similar to those done at BNL and that has been implemented for E989.

vs. HV[kV] (t=186μs)

Muon g-2 Storage Ring: Studies

Betatron resonances

- Muon losses contribute to the systematics of a_{μ}^{E989} by introducing a slowly changing modification to the normal exponential decay and by possibly changing g-2 phase

- Specific configurations of the storage ring (i.e. ESQ HV's and/or magnetic field multipoles) drive resonances that drastically increase muon losses during production.
- The understanding of observed resonances is tantamount to a deeper characterization of the storage ring EQS plates misalignment and nonlinear effects.

 $2v_x - 2v_y = 1$, B-8th pole

Betatron resonances: HV scan

lost muons (sim) vs. HV[kV] (t=121-186μs)

- Aim to maintain lost muon fraction $<10^{-4}$ per muon lifetime
- Measurements: Calorimeters read MIP (Minimum Ionizing Particles) deposited energy (~170MeV) and apply time cuts to detect lost muons.
- Cuts and background-subtraction measurement technique by S. Ganguly
- Optimal HV at ~28kV
- Need to study spin resonances

Betatron resonances: ~18.6kV resonance (from E-fields)

- Precise measurements of EQS plates alignment are done during shutdown. Hard to do during runs
- ~18.6kV resonance was unexpected while quad scan measurements were performed
- ~18.6kV resonance condition is $3\nu_{\gamma}=1$ produced by skew sextupole term fields
 - Non-perfect B-field contributes to skew sextupole term
 - Misaligned EQS plates may introduce electric skew sextupole field

From the electric side, $w_3=0.17 {\rm kV}$ ($r_0=4.5 {\rm cm}$) at Q1S is enough to recreate observed peak at $\sim 18.6 {\rm kV}$.

19

Betatron resonances: ~18.6kV resonance (from E-fields)

- Considering all the other multipoles associated with $w_3=0.17$ kV ($r_0=4.5$ cm) at Q1S from Table 6, NIM-A quad paper (Y. Semertzidis et al., 503(3):476, 2003):

Table 6 The potential multipoles at r=4.5 cm, the edge of the muon storage region, for negative muon storage and ± 24 kV on the plates

Order of multipole	Cosine term (normal) [V]	Sine term (skewed) [V]
1	405	345
2	19875	-75
3	173	-120
4	-190	20
5	-10	-8
6	-35	30
7	-50	35
8	20	10
9	-50	-30
10	-391.3	0
11	-15	10
12	20	4
13	4	2
14	50	-2

The placement of the plates is assumed to be the worst possible (i.e. ± 0.75 mm on the side plates, and ± 0.5 mm on the top ones). The multipoles shown are the highest values found when different combinations of non ideal quad plate positioning is assumed.

lost muons (sim) vs. ESQ Plate voltage (perfect B-field)

- The extra dipole terms from Table 6 introduce muon losses all around, which makes the expected peaks at \sim 17kV and \sim 18.7kV from measurements to lose their observed sharpness.

Betatron resonances: ~18.6kV resonance (from B-fields)

- Based on recent measurements of the magnetic skew sextupole* (blue dots), we add to the ideal g-2 ring simulation model in COSY a skew sextupole $b_2=30$ ppm as shown by the red line above to mimic the tallest peak at ~56°
- Simulation results show the high sensitivity of the $3\nu_y=1$ resonance to magnetic sextupole fields.

^{*} J. Grange et al. Field results trolley run 5/5 evening. Elog-1161, May 2018.

Betatron resonances: ~18.6kV resonance (from B-fields)

- To better evaluate measurements from the simulation side, a more detailed representation of the measured term was implemented (see red dots above)
- Simulation results for this case recreate observations
- Other factors such as damping due to imperfect vacuum and different time scales between simulations (128 μ s) and measurements (700 μ s) may be the main sources of discrepancy.

Betatron resonances: ~16.8kV resonance

- ~16.8kV resonance was not expected when quad scan measurements became available. EQS misalignments or B-field errors thought to be the culprits
- Effect of interplay between B-field errors and EQS multipoles on muon losses not explored for previous g-2 experiments

- Lower order magnetic nonlinearities can boost higher order electric resonances. Same mechanism may happen for spin resonances.

Tunes and f_{CBO} : Tunes measurements vs. simulation

0.32

0.28

0.26

13

 Tunes relate to High-Voltage on ESQ plates

$$v_x \approx \sqrt{1 - \frac{13}{30} \frac{R}{v B_0} \frac{\partial E_y}{\partial y}}$$

$$v_y \approx \sqrt{1 - v_x^2}$$

f_{CBO} results from muon bunch cyclotron frequency and tune

$$fCBO_{0x} = f_{c0}(1 - v_x), \ fCBO_{0y} = f_{c0}v_y$$

- Comparison of data with detailed simulations of muon beam properties allow to identify systematic error sources (EQS plates misalignments, HV's, and more)
- Horizontal tunes in agreement with measurements. Vertical tunes discrepancies may come from amplitude/momentum tune shifts or EQS damaged resistors
- Measurements done by A. Chapelain.

Measurements

Simulation

16

¹⁴HV[kV]

Tunes and f_{CBO} : Time-evolving f_{CBO}

- From data fitting, horizontal f_{CBO} increases by about 1.6% when data set < 50 μ s was removed
- Average vertical position observed to fall ~0.5mm/ms
- Tracking simulations with nonlinear detuning considered did not show varying f_{CBO} nor average vertical position at late times
- Model of damaged EQS resistors recreates observations best
- Measurements done by Tracker team

Tunes and f_{CBO} : Time-evolving f_{CBO} (nonlinear detuning)

- Amplitude and time dependent tune shifts from tune maps
- This approach does not yield vertical beam average position observed either

Tunes and f_{CBO} : Time-evolving f_{CBO} (nominal)

t = 0 when beam is injected

$$fCBO_{0x} = f_{c0}(1 - v_x), \ fCBO_{0y} = f_{c0}v_y \text{ where } f_{c0} = \frac{1}{2\pi} \frac{eB_0}{v_0 m}$$

"fixed point" below corresponds to the x, y coordinates of the closed orbit at K2 center

Tunes and f_{CBO} : Time-evolving f_{CBO} (damaged resistors)

- Tunes calculated from transport maps around closed orbits for different HV settings
- Fixed points from transport maps around ideal orbit
- HCBO and VCBO increase ~1.26% and ~0.61%, respectively, from $120\mu s$ to $400\mu s$
- Vertical fixed point does fall after 50μ s, but nonlinearly

- Increment of **E-field correction** from beam momentum offset $\left\langle \frac{\Delta p}{p_0} \right\rangle \neq 0$ due to inj. kicker imperfect pulse. Special beam collimation could mitigate this issue

$$C_E = -2n(1-n)\beta^2 \frac{\langle x_e^2 \rangle}{\rho_0^2}$$

- Studies of D-shape collimators for several d's

- Due to dispersion, Dshape collimators remove higher-momentum muons
- More muons removed as d increases.
- Low-momentum muons barely affected by D-shape

*Kick pulse in simulations, where $\theta_{max} = 7.5$ mrad

- $\langle x_e^2 \rangle$ is reduced with D-shaped collimators at the expense of storing less muons

- E.g. for d=12mm, stored muons fraction reduced from 2.6% to 2%, but $\langle x_e^2 \rangle$ reduced from 95 to 60mm^2
- Lost muons fractions not much affected by d-cut in collimators
- For higher HV setting, η_x increases ---> D-shape collimation more effective.

Conclusions

- Wide range of HV simulations show configurations to suppress betatron resonance effects and maximize stored muons fraction
 - Betatron resonance simulations and measurements reveal interplay of low order magnetic nonlinearities with electric resonances
 - Such mechanism could drive spin resonances. Will prepare spin simulations, normal form theory frame and do measurements
 - Driving resonance mechanisms possible to understand with COSY simulation
- Simulations with damaged EQS resistors describe observed behavior of $f_{\it CBO}$ and beam average positions
 - Add more details of damaged resistors recently measured
 - Do tracking and study spin, lost and stored muons rates to assess impact on commissioning runs
- Special collimation to reduce systematics of E-field correction
 - Reduction of stored muons limits method
- Next: add inflector to connect beam delivery and storage ring simulations, dispersion measurements along end-to-end beamlines, RF scraping, g-2 phase tracking.

BACKUP

Amplitude-dependent tune shifts

Table 5.1: Event rate calculation using a bottom-up approach.

Item	Factor	Value per fill	Note
Protons on target		10^{12} p	1
Positive pions captured in FODO, $\delta p/p = \pm 0.5\%$	1.2×10^{-4}	1.2×10^{8}	2
Muons captured and transmitted to SR, $\delta p/p = \pm 2\%$	0.67%	8.1×10^{5}	3
Transmission efficiency after commissioning	90%	7.3×10^{5}	4
Transmission and capture in SR	$(2.5 \pm 0.5)\%$	1.8×10^{4}	5
Stored muons after scraping	87%	1.6×10^{4}	6
Stored muons after 30 μs	63%	1.0×10^{4}	7
Accepted positrons above $E = 1.86 \text{ GeV}$	10.7%	1.1×10^{3}	8
Fills to acquire 1.6×10^{11} events (100 ppb)		1.5×10^{8}	9
Days of good data accumulation	17 h/d	202 d	10
Beam-on commissioning days		150 d	11
Dedicated systematic studies days		50 d	12
Approximate running time		$402 \pm 80 \text{ d}$	13
Approximate total proton on target request		$(3.0 \pm 0.6) \times 10^{20}$	14

Table 5.2: The largest systematic uncertainties for the final E821 ω_a analysis and proposed upgrade actions and projected future uncertainties for data analyzed using the T method. The relevant Chapters and Sections are given where specific topics are discussed in detail.

Category	E821	E989 Improvement Plans	Goal	Chapter &
	[ppb]		[ppb]	Section
Gain changes	120	Better laser calibration		
		low-energy threshold	20	16.3.1
Pileup	80	Low-energy samples recorded		
		calorimeter segmentation	40	16.3.2
Lost muons	90	Better collimation in ring	20	13.10
CBO	70	Higher n value (frequency)		
		Better match of beamline to ring	< 30	13.9
E and pitch	50	Improved tracker		
		Precise storage ring simulations	30	4.4
Total	180	Quadrature sum	70	