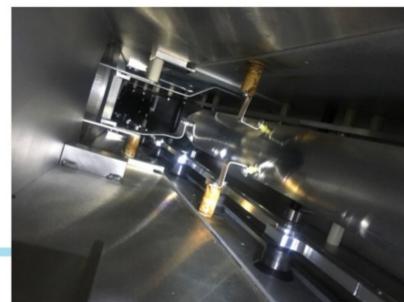
### Kicker Work Summer 2018

Chris Stoughton For the Kicker Team

> *Kicking is how we Get our muons in orbit To precess in peace*


> > June 13 8:20 AM

## The Kicker Team

- Adam Schreckenberger (100%)
- Milorad Popovic (50%)
- Chris Stoughton (50%)
- Robyn Madrak (25%)
- Chris Polly (20%)
- Lee Roberts (15%)
- Antoine Chapelain (10%)
- "a new post-doc" (? %)
- Regis undergrad Intern for FPGA integration (3 weeks?)
- Howard Pfeffer (20%)
- Chris Jensen (20%)

#### How a kick is made?

- a charging power supply charges up
- capacitor bank to low voltage (700 V) that is discharged
- through a *transformer* into
- a *Blumlein*, which is a HV capacitor (55 kV), that is discharged through
- four 50 Ohms resistors, which convert high voltage into high current into
- in-vacuum *plates*, where the current generates magnetic field that rotates momentum vector of muons





# Terminology

- Power Supply, charging signal
- Capacitor Bank, transfer charge signal
- Transformer, secondary V monitor
- Thyratron, discharge signal
- Blumlein, castor oil
- Cables, 4-connector flanges
- Bazooka, fluorinert, resistors
- Vacuum Feed Through, bdot coil
- Leads to plates
- Plates

#### Work Breakdown Structure

1. Reliability

2. Performance

3. Test Stand

## 1.1 Vacuum Feed Throughs

| 1.1     | Vacuum Feed Thrus              |  |
|---------|--------------------------------|--|
| 1.1.1   | design vacuum feed through     |  |
| 1.1.2   | ▼ fabricate                    |  |
| 1.1.2.1 | make parts vacuum feed through |  |
| 1.1.2.2 | assemble vacuum feed through   |  |
| 1.1.3   | test vacuum through            |  |
| 1.1.4   | install vacuum feed through    |  |

Design started by Erik V to address issues with vacuum seal inside insulator Assembly procedure Reliability

M&S Cost: \$30k

## 1.2 Connectorize Cables

| 1.2     | Connectorize Cables            |
|---------|--------------------------------|
| 1.2.1   | ▼ 4-cable flanges              |
| 1.2.1.1 | design 4-cable flange          |
| 1.2.1.2 | fabricate 4-cable flange       |
| 1.2.1.3 | purchase large coax connectors |
| 1.2.1.4 | assemble 4-cable flanges       |
| 1.2.1.5 | prepare cables                 |

Mayling is ready to draft the solution HV coaxial cables fail The existing cables are glued in place Reduce down time to replace Cable already purchased

M&S Cost: \$40k

## 1.3 In vacuum insulators

| 1.3   | In vacuum insulators           |
|-------|--------------------------------|
| 1.3.1 | fabricate in vacuum insulators |
| 1.3.2 | install in vacuum insulators   |

These support the plates Original design uses ceramic cylinders Replacement is "curvy" macor Design done; some replacements delivered

M&S Cost: none additional. This is covered under existing commitment to Cornell

# 1.4 Bazooka Upgrade

| 1.4     | Bazooka Upgrade                      |
|---------|--------------------------------------|
| 1.4.1   | Bazooka Resistors                    |
| 1.4.1.1 | specify bazooka resistors            |
| 1.4.1.2 | purchase bazooka resistors           |
| 1.4.1.3 | design bazooka housing               |
| 1.4.1.4 | specify bazooka current transformer  |
| 1.4.1.5 | purchase bazooka current transformer |
| 1.4.1.6 | fabricate bazooka housing            |
| 1.4.1.7 | install bazooka                      |
| 1.4.1.8 | monitor bazooka current transformer  |
| 1.4.2   | Monitor Fluorinert Flow              |
| 1.4.2.1 | Install Fluorinert Flow Switch       |
| 1.4.2.2 | Monitor Fluorinert Flow Switch       |

#### Resistors carbonize <sup>1.4.2.2</sup> Monitor Fluorinert Flow Switch Original design uses "fragile" resistors AD uses more robust resistors Chance to lower inductance Install a reliable current monitor

M&S Cost: \$40k

# 1.5 Blumlein Maintenance

| 1.5     | Blumleins Maintenance                      |
|---------|--------------------------------------------|
| 1.5.1   | Disassemble and Clean                      |
| 1.5.2   | Test two new thyratrons                    |
| 1.5.3   | Fabricate large and small Blumleininsulato |
| 1.5.3.1 | Specify blumlein insulator rings           |
| 1.5.3.2 | fabricate blimlein insulator rings         |
| 1.5.4   | Blumlein Controller Heater Cable Fix       |
| 1.5.5   | Transformer Upgrade                        |
| 1.5.5.1 | Inspect Transformer                        |
| 1.5.5.2 | specify voltage transformer                |
| 1.5.5.3 | purchase voltage transformer               |
| 1.5.5.4 | install voltage transformer                |
| 1.5.6   | Thyratron Heater Cables                    |
| 1.5.6.1 | Specify thyratron heater cables            |
| 1.5.6.2 | Install thyratron heater cables            |

#### HV Breakdown while charging Readout of transformers does not make sense Heater cables not rated for the power

M&S Cost: \$10k

### 1.6 FPGA spark detector

| 1.6   | FPGA spark detector                     |
|-------|-----------------------------------------|
| 1.6.1 | Change Firmware to veto charging signal |
| 1.6.2 | Spark Detector GUI integration          |
| 1.6.3 | Integrate FPGA veto with charge signal  |

After a "big" spark, more sparking is likely Similar to quench protection We have a s/w work around It is not reliable The FPGA works; needs integration

M&S Cost: \$0k

## 1.7 System Integration

| 1.7     | System Integration                                |
|---------|---------------------------------------------------|
| 1.7.1   | Raise alarms to shifters consistently             |
| 1.7.2   | Interlock on oil,fluorinert sensors               |
| 1.7.3   | Digitize all charging and discharging signals     |
| 1.7.3.1 | specify charging and discharging signals          |
| 1.7.3.2 | implement charging and discharging signal readout |
| 1.7.3.3 | DQM for charging and discharging signals          |

#### We are running by the seat of our pants Many diagnostics would help data quality Risk reduction

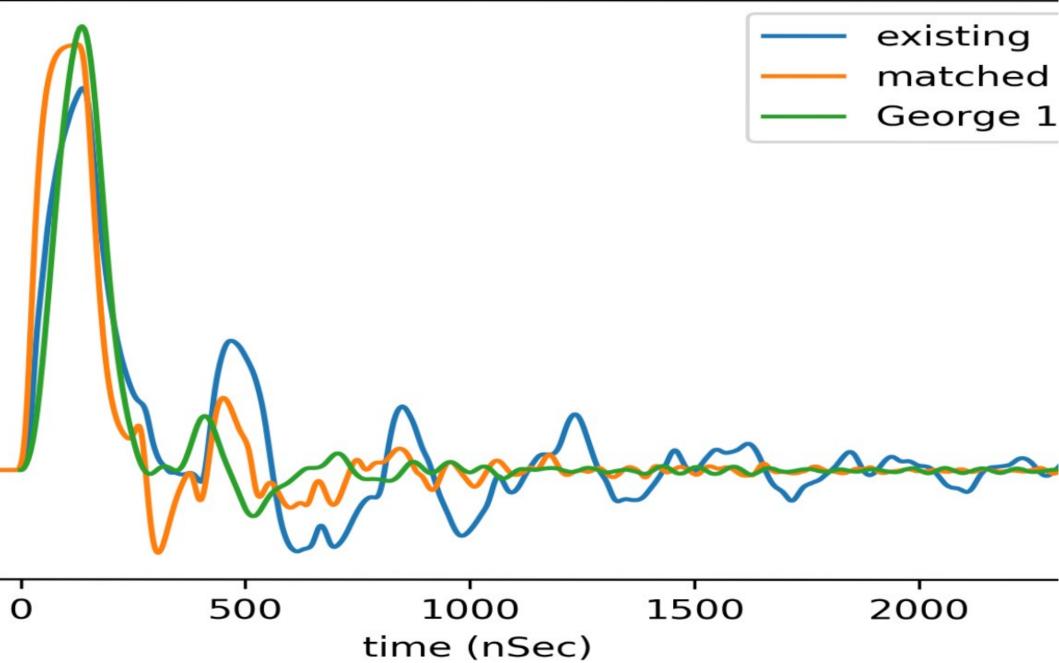
M&S Cost: \$2k

## **1.8 Electronics Racks**

| 1.8   | Electronics Racks                                            |
|-------|--------------------------------------------------------------|
| 1.8.1 | Repackage with fire protection                               |
| 1.8.2 | Fourth rack for power, monitoring, and LOTO circuit breakers |

The racks as delivered were problematic Some quick fixes applied Difficult to maintain LOTO simplified Enhance fire detection

M&S Cost: \$30k


# 1.9 Charging Trigger Logic

| 1.9   | Charging Trigger Logic                    |
|-------|-------------------------------------------|
| 1.9.1 | Generate Triggers in computer room        |
| 1.9.2 | Run charging trigger cables               |
| 1.9.3 | Integrate and test charging trigger logic |

#### Current implementation is noisy – perhaps leading to blown fuses?? Control is awkward Needs integration with spark detector

M&S Cost: \$3k

### **Kicker Pulse Shapes**



## 2.1 Increase Capacity of Charging Circuit

| 2.1   | Increase Capacity of Charging Circuit |
|-------|---------------------------------------|
| 2.1.1 | purchase HV supplies                  |
| 2.1.2 | integrate with charging signals       |

Existing system under rated AD identified new supplies to purchase Control signals similar to existing Will be installed in "new" electronics racks Upgrade resistors/diodes in cap banks.

M&S Cost: \$2k additional (\$33k already spent)

## 2.2 Reduce Inductance of Leads

| 2.2   | Reduce Inductance of leads from feed through to plates |
|-------|--------------------------------------------------------|
| 2.2.1 | Prototype leads to plates                              |
| 2.2.2 | Fabricate leads to plates                              |
| 2.2.3 | Install leads to plates                                |

#### Existing system has large loop These are flat AI plates bent to shape Insulate with Teflon/Kapton

M&S Cost: \$10k

## 2.3 Lengthen Kicker Plates

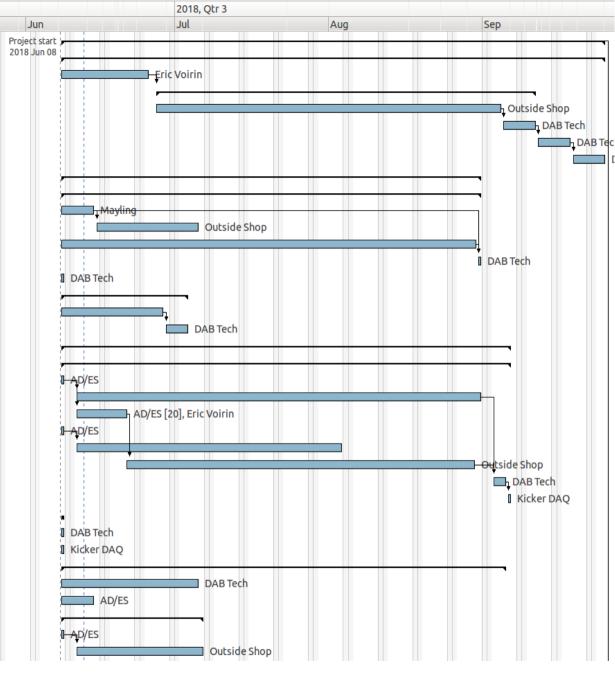
| 2.3   | Lengthen Kicker Plates           |
|-------|----------------------------------|
| 2.3.1 | Design Kicker Plate Extension    |
| 2.3.2 | Fabricate Kicker Plate Extension |
| 2.3.3 | Install Kicker Plate Extension   |

Kick = B • L Increasing L helps a lot! The added inductance is not that bad.

(Note: more simulations needed to quantify)

M&S Cost: \$10k




A lab where we can prototype

The correct solution:

- Add capacitors bridging the plates
- Terminate with 12.5 ohms at end
- prototype to confirm SPICE model
- capacitors in vacuum; non-magnetic

#### M&S Cost: \$50k

| WBS     | Name                                              | Work |
|---------|---------------------------------------------------|------|
| 1       | Reliability                                       | 549d |
| 1.1     | ▼ Vacuum Feed Thrus                               | 77d  |
| 1.1.1   | design vacuum feed through                        | 12d  |
| 1.1.2   | ▼ fabricate                                       | 55d  |
| 1.1.2.1 | make parts vacuum feed through                    | 50d  |
| 1.1.2.2 | assemble vacuum feed through                      | 5d   |
| 1.1.3   | test vacuum through                               | 5d   |
| 1.1.4   | install vacuum feed through                       | 5d   |
| 1.2     | ▼ Connectorize Cables                             | 82d  |
| 1.2.1   | ▼ 4-cable flanges                                 | 82d  |
| 1.2.1.1 | design 4-cable flange                             | 5d   |
| 1.2.1.2 | fabricate 4-cable flange                          | 15d  |
| 1.2.1.3 | purchase large coax connectors                    | 60d  |
| 1.2.1.4 | assemble 4-cable flanges                          | 1d   |
| 1.2.1.5 | prepare cables                                    | 1d   |
| 1.3     | ▼ In vacuum insulators                            | 18d  |
| 1.3.1   | fabricate in vacuum insulators                    | 15d  |
| 1.3.2   | install in vacuum insulators                      | 3d   |
| 1.4     | ▼ Bazooka Upgrade                                 | 168d |
| 1.4.1   | Bazooka Resistors                                 | 166d |
| 1.4.1.1 | specify bazooka resistors                         | 1d   |
| 1.4.1.2 | purchase bazooka resistors                        | 60d  |
| 1.4.1.3 | design bazooka housing                            | 10d  |
| 1.4.1.4 | specify bazooka current transformer               | 1d   |
| 1.4.1.5 | purchase bazooka current transformer              | 40d  |
| 1.4.1.6 | fabricate bazooka housing                         | 50d  |
| 1.4.1.7 | install bazooka                                   | 3d   |
| 1.4.1.8 | monitor bazooka current transformer               | 1d   |
| 1.4.2   | ▼ Monitor Fluorinert Flow                         | 2d   |
| 1.4.2.1 | Install Fluorinert Flow Switch                    | 1d   |
| 1.4.2.2 | Monitor Fluorinert Flow Switch                    | 1d   |
| 1.5     | Blumleins Maintenance                             | 113d |
| 1.5.1   | Disassemble and Clean                             | 20d  |
| 1.5.2   | Test two new thyratrons                           | 5d   |
| 1.5.3   | Fabricate large and small Blumleininsulator rings | 21d  |
| 1.5.3.1 | Specify blumlein insulator rings                  | 1d   |
| 1.5.3.2 | fabricate blimlein insulator rings                | 20d  |



| WBS Name Work Jun Jul 1.5.4 V Transformer Upgrade 64d                 |
|-----------------------------------------------------------------------|
| .5.4 <b>v</b> Transformer Upgrade 64d 64d                             |
|                                                                       |
| .5.4.1 Inspect Transformer 2d EAD/ES                                  |
| 5.4.2 specify voltage transformer 1d hAD/ES                           |
| 5.4.3 purchase voltage transformer 60d                                |
| .5.4.4 install voltage transformer 1d                                 |
| .5.5 Thyratron Heater Cables 3d                                       |
| .5.5.1 Specify thyratron heater cables 1d 1d                          |
| 1.5.5.2 Install thyratron heater cables 2d 🗖 AD/ES                    |
| 1.6 V FPGA spark detector 14d                                         |
| .6.1 Change Firmware to veto charging signal 2d Ryan Rivera           |
| 1.6.2 Spark Detector GUI integration 10d Kicker DAQ                   |
| 1.6.3 Integrate FPGA veto with charge signal 2d Kicker DAQ            |
| 1.7 ▼ System Integration 33d                                          |
| .7.1 Raise alarms to shifters consistently 10d Kicker DAQ             |
| .7.2 Interlock on oil, fluorinert sensors 2d g-2 controls             |
| .7.3 V Digitize all charging and discharging signals 21d              |
| .7.3.1 specify charging and discharging signals 1d II-Kicker DAQ      |
| .7.3.2 implement charging and discharging signal readout 10d          |
| 1.7.3.3 DQM for charging and discharging signals 10d Kicker DAQ       |
| .8 Telectronics Racks 30d                                             |
| .8.1 Repackage with fire protection 20d Steve Chappa et al.           |
| .8.2 Fourth rack for power, monitoring, and LOTO circuit breakers 10d |
| 9 V Charging Trigger Logic 14d                                        |
| .9.1 Generate Triggers in computer room 10d Lawrence Gibbons et al.   |
| .9.2 Run charging trigger cables 2d <u></u>                           |
| .9.3 Integrate and test charging trigger logic 2d Kicker DAQ          |
| Performance 119d                                                      |
| 1 ▼ Increase Capacity of Charging Circuit 41d                         |
| 2.1.1 purchase HV supplies 40d                                        |
| 2.1.2 integrate with charging signals 1d                              |
| 2.2 Treduce Inductance of leads from feed through to plates 23d       |
| 2.2.1 Prototype leads to plates 10d AD/ES, DAB Tech                   |
| 2.2.2 Fabricate leads to plates 10d                                   |
| 2.2.3 Install leads to plates 3d                                      |
| 2.3 Vengthen Kicker Plates 55d                                        |
| 2.3.1 Design Kicker Plate Extension 5d Mayling                        |
| 2.3.2 Fabricate Kicker Plate Extension 40d                            |
| 2.3.3 Install Kicker Plate Extension 10d                              |

### Kicker Resource Roll Up

Labor (FTE Days) Engineering: Eric Voirin 38 Steve Chappa 32 Ryan Rivera 2 Jensen/Pfeffer 42

M&S: FY18 \$187k FY19 \$50k

g-2 Technical help: DAB Tech 132 g-2 controls 4

g-2 scientists Kicker DAQ 36 Lawrence Gibbons 10