

HEP ROADMAP

AND AWA

MARCEL DEMARTEAU High Energy Physics Division Argonne

June 7, 2018

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

- The roadmap for High Energy Physics for the next decade has been articulated in the Particle Physics Project Prioritization Panel (P5) Report "Building for Discovery", May 22, 2014.
- The P5 plan is science-driven and identified five science drivers:
 - Use the Higgs boson as a new tool for discovery.
 - Pursue the physics associated with neutrino mass.
 - Identify the new physics of dark matter.
 - Understand cosmic acceleration: dark energy and inflation.
 - Explore the unknown: new particles, interactions, & physical principles.

2

ACCELERATOR R&D

U.S. Department of Energy laborate

Subpanel Report on Strategic Plan for Accelerator R&D

- Following P5, an Accelerator R&D Subpanel was charged to identify the most promising accelerator research areas to support the advancement of HEP
 - P5 recommendation: pursue accelerator R&D with a focus on outcomes and capabilities that will dramatically improve cost effectiveness for mid-term and far-term accelerators

	Intensity Frontier Accelerators	Hadron Colliders	<i>e⁺e</i> - Colliders
Current Efforts	PIP	LHC	
	PIP-II	HL-LHC	ILC
Next Steps	Multi-MW proton beam	Very high-energy <i>pp</i> collider	1 TeV class energy upgrade of ILC*
Further Future Goals	Neutrino factory*	Higher-energy upgrade	Multi-TeV collider*
		* = dependen	t on how physics unfolds

UChicago .

Argonn

ACCELERATOR R&D ROADMAPS

Subpanel Reports on Strategic Plan for Accelerator R&D

- Following the release of the HEPAP Accelerator R&D Subpanel Report in April 2015, the GARD Program engaged its research community to develop research roadmaps for three thrust areas:
- Superconducting High Field Magnets
 - Produced the U.S. Magnet Development Program Plan
- Advanced Accelerator Concepts
 - Laser-driven plasma wakefield acceleration (LWFA)
 - Particle-beam-driven plasma wakefield acceleration (PWFA)
 - Dielectric wakefield acceleration (DWFA)
- Radiofrequency Acceleration Technology
 - Superconducting RF
 - Normal Conducting RF
 - RF Sources
- Community-developed roadmaps include:
 - Pressing challenges to be addressed to move the field forward
 - Prioritized milestones aligned to the most compelling research

UChicago
Argonne

US ROADMAP

Wakefield Acceleration

The US roadmap is fully based on three wakefield acceleration technologies

Medium Driver	Metallic or Dielectric	Plasma	
Laser Pulse	Dielectric Laser Accelerator DLA	Laser Wakefield Accelerator LWFA	
Particle Bunch	Structure Wakefield Accelerator SWFA	Plasma Wakefield Accelerator PWFA	

US ROADMAP

Wakefield Acceleration

- The US roadmap is fully based on three wakefield acceleration technologies
- AWA supports two out of three

Where does this lead us?

There is more to the Standard Model than we know

7

Will the LHC Tell ?

SUISSE

FRANCI

CMS

LHC 27 km

CERN Prévessin

ATLAS

SPS-

CERN Meyri

ALICE

Will the LHC Tell ? A: Yes -> need precision studies

SUISSI

ERANC

CMS

CERN Prévessin

ATLAS

CERN Meyn

ALICE

HC 27 km

Will the LHC Tell ? A: Yes → need precision studies! A: No. → need new tool!

SUISSE

ERANC

CMS

CERN Prévessin

ATLAS

CERN Meyr

ALICE

OPTIONS

Phase I: e⁺e⁻ Phase II: pp

UChicago ► Argonne_{uc}

7

DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Argonne

UChicago ►

12

AWA Science Advisory Meeting, June 7, 2018 -- M. Demarteau

U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Argonne

OBSERVATIONS

Personal Point of View

- There are no no-lose theorems anymore in particle physics
- The future, i.e. beyond HL-LHC, points towards:
 - Higher Energy: need high-field magnets, long development path, not cheap.
 - e⁺e⁻ machines for precision studies: Energy, Luminosity, Polarization.
 - High power proton drivers for low rate experiments: many MW proton drivers.
- The value of e⁺e⁻ colliders is well recognized.
- The world is evaluating its options:
 - Japan: bid to host the ILC or not known by the end of the year (250 GeV).
 - European strategy: HE-LHC, CLIC? (final decision at next strategy update?).
 - China: CepC (needs to wait until next 5-year plan).
 - USA: LBNF/DUNE.

14

P5 PROJECTS

Funding Profile

Large Projects	2015	2020	20 <mark>25</mark>	2030
Mu2e				
LHC ATLAS & CMS				
HL-LHC				
LBNF/DUNE (not baselined)				
PIP-II (not baselined)				
Medium and Small Projects	2015	2020	2025	2030
LSST				
DESI				
DM-G2 (LZ & SuperCDMS)				
		Ļ	Ļ	

15

HEP BUDGET PROFILE

Major Projects

Prospects for funding beyond scenario B are looking very good

FUNDING PROFILE

Major Projects

- If the FY19 proposed funding ^{\$400} for HEP is passed and sustained, ^{\$350} there is a real opportunity for a large project on the timescale of 2025 [§] ^{\$250}
- timescale of 2025
 The US could retake its leader- ship position in colliders

U.S. Department of Energy laborato

Proposed DOE Facility Funding Authorizations

UChicago ►

Argonne

PRECISION

Most Significant Deviations at Low Energy

Belle II: hadronic uncertainty in semi-leptonic B decays with tau, B to Kll decays, etc.

What are the opportunities for a (colliding) beam facility with energy around 10 GeV (<50 meters at 300MV/m)?

$$\begin{array}{c} (D^{(\gamma)}) - DI \quad (D \longrightarrow D^{(\gamma)} V_{T}) \quad I \quad DI \quad (D \longrightarrow D^{(\gamma)} \quad \mathcal{U}_{\ell}) \\ \end{array}$$

$$\begin{array}{c} 0.5 \\ Belle, \ PRD92,072014(2015) \\ LHCb, \ PRL115,111803(2015) \\ Belle, \ PRD94,072007(2016) \\ \end{array}$$

$$\begin{array}{c} \Delta \chi^{2} = 1.0 \text{ contours} \\ \end{array}$$

$$\begin{array}{c} SM \ Predictions \\ D \quad D \quad D^{(\gamma)} \quad \mathcal{U}_{\ell} \\ \end{array}$$

D(D(*)) - D(*) - D(*)

OPTIONS Staging

19

Z

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

20

AWA STRATEGY

AWA's broad capabilities

Advanced Accelerator R&D

Facility for Users

Non-HEP applications

Can enable transformational initiatives

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

