

MUSE Network General Meeting

22-24 October 2018 Fermilab US/Central timezone

Production in g-2

Anna Driutti University of Udine & INFN

Muon g – 2 **Timeline**

- Run 0: commissioning run with 1-4 fills/min and beam dominated by protons.
- Run 1: commissioning + physics run achieved 50% of design flux and recorded 2×BNL stat.
- Run 2: summer shutdown work to increase muon flux by a factor of 1.5 ⇒ expect to reach 10×BNL stat. by summer 2019
- Run 3: increase muon flux by an additional factor of 1.4 during the summer shutdown ⇒ expect to reach 20×BNL stat. by summer 2020 (TDR goal)

Summary Run1 (2018)

- collected ~ 2 × BNL statistics of physics data
- different experimental conditions
 ⇒ 7 datasets
- offline reconstruction workflow that embeds also data quality conditions and includes data size reduction (accomplished by dropping most of the raw data)
- needed simulation for Run 1 studies (e.g., lost muons)

Muon g - 2 data flow

Muon *g*-2 **Offline Reconstruction Chain**

 Production team provides the reconstructed and simulated data to analyzers using the following fully automated chain (using Fermilab's SCD tools):

First Step: Data-Acquisition and Truth-Simulation

- MIDAS for data acquisition
- backend machines collect data from:
 - 24 calorimeters and laser calibration monitoring system
 - 3 (2) tracking stations
 - 4 fiber harps
 - Inflector Beam Monitoring System (IBMS) and T0
 - 4 quadrupoles and 3 kickers
- expected 20 GB/s of data
- "island chopping" in the GPUs to reduce the amount of data

Simulation MC gm2 Simulation

- performed with GM2Ringsim (a GEANT based model of the storage ring)
- includes all of the detectors (but not laser system)
- includes different particle guns e.g., GasGun, BeamGun

Second Step: Data-Unpacking and Truth-Digitization

Experiment

 unpacking stage: read the raw MIDAS file and store the information as an art event structure

Simulation

- digitization stage:
 - a fill builder aggregates the muon decay events and converts them into a single g-2 fill event
 - waveform building module simulated the SiPM waveforms (responses + digitizer behaviors)
 - "island chopping" similar to the one done GPUs in the frontend machines

Third Step: Calorimeters' Reconstruction

- Reconstruction stage:
 - process the raw data using low level analysis
 - identical for simulation and experiment - exception calibrations/corrections only for DAQ data.

Calibrations/Corrections:

- Photoelectron Equalitization (from fitted pulse integral to n.p.e.);
- Out-of-fill Correction (long term gain variations);
- In-fill Correction (short term gain variations);
- Energy Calibration (from n.p.e. to MeV);

→ saved in the offline database

Reconstruction Alghoritms

Recon West:

- Local fitting
- Each crystals digitized trace is fit independently
- Crystal fit results then clustered in time and space

- - no fitting: individual fill crystal traces summed
 - calo's integrated charge plotted vs. time

Recon East:

- Global fitting
- Fit clusters of crystal traces simultaneously
- Based on EM shower model and positron impact parameters

Third Step: Auxiliary Detectors & Tracker Reconstruction

- Auxiliary Detectors:
 - T0
 - IBMS
 - Quads
 - kickers
- for timing, data quality selection etc.

• Tracker:

 Track finding and fitting for straw trackers

Summary & Conclusions

- Production workflow includes unpacking and reconstruction of the data acquired by the experiment.
- Calibration/correction factors and data quality selection are embedded.
- Simulation sample are generated and reconstructed with a similar workflow.
- A well-develop production workflow will be essential for future data-taking since it is planned to acquire about 10 times the amount of data of Run 1.

Thank You