

PIP-II and proton opportunities

Paul Derwent MUSE Network General Meeting 24 October 2018

"P5 Report"

- The Particle Physics Project Prioritization Panel (P5) advises the US Department of Energy (DOE) Office of High Energy Physics on research funding priorities in high energy physics
- After a lengthy process, the panel released a report in May, 2014. Top priorities for Fermilab:
 - Support the LHC and its planned luminosity upgrades
 - Pursue the g-2 and Mu2e muon programs*
 - Focus on a high energy neutrino program to determine the mass hierarchy and measure CP violation.
 - Will ultimately require a "multi-megawatt" beam at 60-120 GeV
 - Continue at least R&D toward a future linear e⁺e⁻ collider (ILC)

"P5 Report"

- The Particle Physics Project Prioritization Panel (P5) advises the US Department of Energy (DOE) Office of High Energy Physics on research funding priorities in high energy physics
- After a lengthy process, the panel released a report in May, 2014. Top priorities for Fermilab:
 - Support the LHC and its planned luminosity upgrades
 - Pursue the g-2 and Mu2e muon programs*
 - Focus on a high energy neutrino program to determine the mass hierarchy and measure CP violation.
 - Will ultimately require a "multi-megawatt" beam at 60-120 GeV
 - Continue at least R&D toward a future linear e⁺e⁻ collider (ILC)

Fermilab Program Goals

Fermilab's goal is to construct & operate the foremost facility in the world for particle physics research utilizing intense beams.

- Neutrinos
 - MINOS+, NOvA @700 kW
 - LBNF @ multi-MW
 - Short Baseline Neutrino @ 10's kW
- Muons
 - Muon g-2 @ 17-25 kW
 - Mu2e @ 8-100 kW
- Longer term opportunities
- \Rightarrow This requires more protons!

(and this statement tends to be time invariant)

"Upgrade the Fermilab Proton Accelerator Complex to produce higher intensity beams. R&D for the Proton Improvement Plan II (PIP-II) should proceed immediately, followed by construction, to provide proton beams of > 1 MW by the time of the first operation of the new long-baseline neutrino facility" – Recommendation 14, P5 report

Paul Derwent I MUSE October 2018

24 October 2018

🛠 Fermilab

The Fermilab Accelerator Complex Today

- The Fermilab complex delivers protons for neutrino production at both 8 and 120 GeV, with a present capability:
 - 8 GeV: 4.6×10^{12} protons @ 15 Hz = 88 kW
 - 120 GeV: 5.0×10^{13} protons @ 0.75 Hz = 715 kW
- Present limitations
 - Booster pulses per second
 - The Booster magnet/power supply system operates at 15 Hz
 - Rings Beam Loss
 - Higher Power operation is all about controlling beam loss
 - Target systems capacity
 - Limited to ~800 kW

Fermilab

Experimental Program

- At 8 GeV
 - Neutrinos (Booster)
 - ANNIE
 - MicroBooNE
 - MiniBooNE
 - MITPC
 - SciBath
 - ICARUS (future)
 - SBND (future)
 - Muons (Recycler & Muon Rings)
 - g-2
 - Mu2e (future)

- At 120 GeV
 - Neutrinos
 - MINOS+
 - MINERvA
 - NOvA
 - DUNE (future)
 - Fixed Target
 - SeaQuest
 - LArIAT
 - Test Beam Facility

Strategy for the next ~10 years Proton Improvement Plan (PIP)

The near-term goal is to double the Booster beam repetition rate to 15 Hz, while addressing reliability concerns

- Required for simultaneous operations of NOvA, g-2, Mu2e, SBN
- 700 kW to NOvA: 4.9e13 @ 120 GeV @ 0.75 Hz
- Design Criteria
 - 15 Hz beam operations at 4.2×10^{12} protons per pulse (80 kW)
 - Linac/Booster availability > 85%
 - Residual activation at acceptable levels
 - Useful operating life for the Linac through 2023 and the Booster through 2030
- Scope
 - 15 Hz Capability:
 - RF upgrades, cavity refurbishment
 - Power and water distribution
 - Reliability: >85% uptime, reduce operational risk
 - Drift Tube Linac RF replacement ⇒200 MHz klystrons/modulators
 - Additional Booster RF cavities
 - Power and water distribution
 - Beam Quality and Losses: RFQ, dampers, collimators/absorbers
 - · To maintain activation at current levels or lower
- Execute over the years 2011 2019

Progress: Beam through Booster

Current v Program: NuMI→MINOS+NOvA

- The "Neutrinos from the Main Injector" (NuMI) line uses 120 GeV neutrinos from the Main Injector to produce neutrinos, which are detected in
 - MINOS: 725 km away in the Soudan Mine in Minnesota
 - NOvA: 810 km away in Ash River, Minnesota, 14.6 mrad off axis
 - Produces narrower energy spread

Current Program: g-2, Mu2e

- g-2 :
 - 4 Booster batches (4e12 at 8 GeV) every 1.4 seconds to Recycler
 - Adiabatically rebunch 53 MHz to 2.5 MHz
 - ~125 nsec width
 - 16 extractions of protons -> 3.094 GeV muons to Delivery Ring
 - Circulate 5 turns (protons & muons separate in time), then to g-2 ring
 - 15 kW
- Mu2e:
 - 2 Booster batches (4e12 at 8 GeV) every 1.4 seconds to Recycler
 - Adiabatically rebunch 53 MHz to 2.5 MHz
 - 8 Extractions of protons
 - Slow spill from Delivery Ring
 - 7.3 kW

Previous Year Delivery

Regular operation at 15 Hz

Previous Year Delivery

Power and Uptime to meet Proton on Target goals

Previous Year Delivery

Neutrino Experiments Need : Mass * Power * Time

We want to achieve our physics goals in a timely manner!

From DUNE CDR – May 2015

50% CP Violation Sensitivity

Figure 3.17: The significance with which CP violation can be determined for 50% (left) or 75% (right) of $\delta_{\rm CP}$ values as a function of exposure. The shaded region represents the range in sensitivity due to potential variations in the beam design. This plot assumes normal mass hierarchy.

😤 Fermilab

75% CP Violation Sensitivity

DUNE Physics Goals

40kT with 1.2 MW is a 20 year program

Detector Fiducial Mass (kton)	Proton Beam Power (MW)	YEARS to reach 120kT.MW.yr	YEARS to reach 600kT.MW.yr	YEARS to reach 900kT.MW.yr
10	0.7	17	86	129
20	0.7	9	43	64
30	0.7	6	29	43
40	0.7	4	21	32
10	1.2	10	50	75
20	1.2	5	25	38
40	1.2	3	13	19
20	2.4		13	19
40	2.4	1	6	9

‡ Fermilab

Strategy for the next ~10 years Proton Improvement Plan-II (PIP-II)

The longer-term goal is to increase the beam power delivered from the Main Injector by an additional 50% and to provide increased beam power to the 8 GeV program, while providing a platform for the future

- Strategy
 - Increase the Booster per pulse intensity by 50%
 - Requires increase in injection energy to ~800 MeV
 - Modest modifications to Booster/Recycler/MI
- Design Criteria
 - Deliver 1.2 MW of beam power at 120 GeV, approaching 1 MW down to 60 GeV, at the start of LBNF operations
 - Support the current 8 GeV program, including Mu2e, g-2, and the suite of short-baseline neutrino experiments
 - Provide an upgrade path for Mu2e
 - Provide a platform for extension of beam power to LBNF to >2 MW
 - Provide a platform for extension of capability to high duty factor/higher beam power operations
 - At an affordable cost to DOE
- Execute over 2015 2026

PIP-II Technical Approach

- Construct a modern 800-MeV superconducting linac, of Continous Wave (CW) RF components, operating initially in pulsed mode
 - Ameliorate space-charge forces at Booster injection, allowing an increase Booster/Recycler/Main Injector per pulse intensity of ~50%, while preserving transverse & longitudinal emittance at current levels
 - Allow for multiple destinations of SCL beam in addition to Booster / Long Baseline program
- Accompanied by modifications to Booster/Recycler/Main Injector to accommodate higher intensities and higher Booster injection energy
- Increase Booster repetition rate to 20 Hz
 - Maintain 1 MW down to 60 GeV or,
 - Provide factor of 2.5 increase in power to 8 GeV program
- Described in the Conceptual Design Report
 - http://pip2-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=113&filename=PIP-II_CDR_v.0.1.pdf&version=8

PIP-II

- Formal Department of Energy Project in the Office of High Energy Physics
 - Critical Decision 0: Mission Need Statement
 - Office of Science Approval October 2015
 - Energy Systems Acquisitions Advisory Board November 2015
 - Critical Decision 1: Selection of Alternative
 - Energy Systems Acquisitions Advisory Board July 2017
 - Preparing for Critical Decision 2: Approve Performance Baseline
 - FY19

- Vigorous program to address technical, cost, and schedule risk underway
- Anticipate construction start in 2020, with completion in 2026 time frame

PIP-II Technical Approach/Site Layout

Performance Goals

Performance Parameter	PIP	PIP-II	
Linac Beam Energy	400	800	MeV
Linac Beam Current	25	2	mA
Linac Beam Pulse Length	0.03	0.54	msec
Linac Pulse Repetition Rate	15	20	Hz
Linac Beam Power to Booster	4	17	kW
Linac Beam Power Capability (@>10% Duty Factor)	4	~200	kW
Mu2e Upgrade Potential (800 MeV)	NA	>100	kW
Booster Protons per Pulse	4.3×10 ¹²	6.5×10 ¹²	
Booster Pulse Repetition Rate	15	20	Hz
Booster Beam Power @ 8 GeV	80	166	kW
Beam Power to 8 GeV Program (max)	32	83	kW
Main Injector Protons per Pulse	4.9×10 ¹³	7.5×10 ¹³	
Main Injector Cycle Time @ 60-120 GeV	1.33**	0.7-1.2	sec
LBNF Beam Power @ 60-120 GeV	0.7**	1.0-1.2	MW
LBNF Upgrade Potential @ 60-120 GeV	NA	>2	MW

**NOvA operations at 120 GeV

PIP-II Components

- Linac-to-Booster transfer line
 - 3-way beam split to: (1) Beam dump, (2) Booster & (3) Mu2e-II
 - Mu2e stub off enclosure
 - Design Optics to transport 800 MeV H- to M4

Unique feature of PIP-II: flexible bunch structure

- "Bunch-by-bunch selection" in MEBT allows removing unwanted bunches
 - Effective injection into the Booster
 - With an RF separator at the end of the linac, possibility to deliver beam quasi-simultaneously to different users with very different time structure
- The selection scheme is being tested at PIP2IT
 - Chopping system: Two kickers working in sync and absorber.
 - 6σ separation at absorber Simulated 3σ envelopes of passed (top) and removed (bottom) bunches - 99.9%

24 October

2018

PIP2IT at CMTF

24 October 2018

Paul Derwent | MUSE October 2018

Chopping system

- Two kickers working in sync and absorber
- Since a CW-compatible kicker capable of providing an arbitrary pattern was beyond state-of-the-art, two kicker versions were developed, "200 Ohm" and "50 Ohm"
 - Both are installed and characterized with beam

50 Ohm kicker

• Absorber prototype has been developed and tested at full power density with an electron beam and at 7x CDR parameters at PIP2IT

200 Ohm kicker

¹/₄ length absorber prototype

It does work!

- Single 200 Ω chopper:
 - See beam separation in transverse plane
 - Insert scraper, measure time structure with Resistive Wall Current Monitor
 - Understood at the 0.2% level (reflections, noise)
- For project, specification is only 10⁻⁴ extinction... we think it can do much better

Time Structure for Mu2e

- Fundamental Time Structure set by 1st bunching device
 - 162.5 MHz Radio Frequency Quadrupole
 - 6.15385 nsec
 - <10 psec width at 800 MeV</p>
- Select 162.5 MHz bunches : populated or empty
 - Populate: 1 every 4 (24.6 nsec) for 130 nsec 1.15e9 H⁻
 - Followed by 234 'empty'
 - 1.6923 μsec pulse spacing
- 20 Hz Booster program: DUNE/SBN
 - 1.1% duty factor
 - Mu2e-II can use other 98% duty factor
 - 6.6e15 H⁻ / second
 - 85 kW

DUNE Physics Goals

40kT with 2.4 MW is a 10 year program

Detector Fiducial Mass (kton)	Proton Beam Power (MW)	YEARS to reach 120kT.MW.yr	YEARS to reach 600kT.MW.yr	YEARS to reach 900kT.MW.yr
10	0.7	17	86	129
20	0.7	9	43	64
30	0.7	6	29	43
40	0.7	4	21	32
10	1.2	10	50	75
20	1.2	5	25	38
40	1.2	3	13	19
20	2.4	3	13	19
40	2.4	1	6	9

😴 Fermilab

PIP-III (~203x)

- 2.4 MW requires 1.5×10¹⁴ particles from MI every 1.2 s @ 120 GeV
 - Every 0.6 sec @ 60 GeV
- Current model (Slip-stacking in Recycler) is not an option at these intensities
 - Need to box-car stack 6 \times 2.5 \times 10¹³ protons in less than 0.6 sec
 - >10 Hz rep-rate
 - Or inject a long (linac) pulse directly into Main Injector
- Booster is not capable of accelerating 2.5×10¹³ no matter what the injection energy, or how it is upgraded: many issues...
- Achieving 2+ MW will require replacement of the Booster with either a multi-GeV pulsed linac or a rapid cycling synchroton (RCS) fed by $a \ge 0.8$ GeV linac
- PIP-III: 20 Hz operations of a new RCS at ~2.5×10¹³ ppp
 - Deliver 2.4 MW @ 60-120 GeV from the Main Injector to the LBNF beamline in support of the DUNE experiment
 - Deliver up to 80 kW @ 8 GeV to support g-2, Mu2e, and short-baseline neutrinos
 - Deliver ~100 kW @ 800 MeV to support a second generation Mu2e

Replacing the Booster: Linac or RCS?

- 8 GeV pulsed linac:
 - Pros:
 - Lots of power at 8 GeV and/or lower energies
 - Full Main Injector power at lower energies.
 - Short baseline neutrinos
 - Rare K decays, etc.
 - Cons:
 - Potential 8 GeV users want short bunches, so must keep Recycler, which complicates things and has worries about long term viability.
 - Charge stripping makes H⁻ injection at 8 GeV is a very big deal:
 - Weak magnets, extended optics in the beam transport
 - Even black body radiation stripping a problem
 -> cooled beam pipe

- RCS
 - Pros:
 - Demonstrated performance (J-PARC)
 - Can eliminate Recycler (and associated risks and inefficiencies)
 - Option of increasing MI injection energy
 - Cons:
 - Limited protons at 8 GeV.
 - Main Injector power falls off at lower beam energies.

Comparison of Parameters*

		PIP-II (Existing	New 8 GeV	New 8 GeV	
		Booster)	Linac	RCS	units
MI/Recycler					
Bea	am Energy	120	120	120	GeV
Сус	cle Time	1.2	1.2	1.45	sec
Pro	otons per pulse	7.5E+13	1.6E+14	1.9E+14	ррр
Bea	am Power	1.2	2.5	2.5	MW
Proton Source					
Inje	ection Energy (Kinetic)	0.8	0.8	0.8-2.0	GeV
Ext	raction Energy (Kinetic)	8.0	8.0	8.0	GeV
Pro	otons per Pulse	6.4E+12	1.6E+14	3.2E+13	
Bea	am Power to Recycler/MI	82	168	168	kW
Bea	am Power to 8 GeV Program	82	3872	645	kW

~6x record Booster ppp ~4x record Main Injector ppp

24 October 2018

Paul Derwent | MUSE October 2018

RCS Comparisons

	Booster	Booster	New RCS	New RCS	
	(now)	(PIP-II)	(800 MeV)	(2 GeV)	JPARC RCS
Circumference [m]	474	474	474	474	348
Injection Energy [MeV]	400	800	800	2000	400
Extraction Energy [MeV]	8000	8000	8000	8000	3000
Injection Current [mA]	30	4	5	5	50
RF Harmonic	84	84	84	84	2
Emittance (normalized) [pi-mm-mr]	15	15	20	20	102
Protons/batch [1e12]	4.2	6.6	32	32	84
Bunching Factor	3.0	3.0	3.0	3.0	2.0
Gaussian factor	3.0	1.0	1.0	1.0	1.0
Tune Shift Parameter	-0.43	-0.11	-0.41	-0.13	-0.28
Frequency [Hz]	15	20	1 20	20	25
Output power, max [kW]	81	169	819	819	1008

achieved

Too big for "ordinary" synchrotron

PIP-III (~203x)

Summary

Fermilab's goal is to construct & operate the foremost facility in the world for particle physics research utilizing intense beams.

- Neutrinos
 - NOvA @700+ kW
 - DUNE @ multi-MW
 - SBN @ 10's kW
- Muons
 - Muon g-2 @ 15-25 kW
 - Mu2e @ 8-100 kW
- Longer term opportunities
- Multi Stage Plan
 - PIP -> PIP-II -> PIP-III
 - 700 kW -> 1.2 MW -> 2+ MW Long Baseline Program
 - Continue to support Short Baseline and Muon Programs

