

Summary of Tracking Analysis

Joe Price, University of Liverpool MUSE 22nd October 2018

What are the tracker's main physics goals?

- 1. Measure the stored beam profile for:
 - Effective magnetic field seen by muons
 - Beam position & width oscillations
 - Pitch correction to ω_a from vertical motion

🌫 Fermilab

- Independently measure e⁺ momentum to validate calo algorithms for pile-up & gain corrections
- 3. Look for vertical oscillations for a muon EDM search

Tracker Design Overview

Two trackers: each with 8 modules that sit in front of calorimeter

Each module has 128 straws in four layers

Muon's-eye view inside vacuum chamber

Track Reconstruction: Finding Tracks in Hits

Select candidates for tracking based on hit times and locations:

Track Reconstruction: Finding Tracks in Hits

Select candidates for tracking based on hit times and locations:

Track fitting is a global χ^2 algorithm with Geant4 used for track propagation in non-uniform field

Track Extrapolation: Decay Point & Calorimeters

We extrapolate tracks backwards to decay point and forwards to calorimeter:

🚰 Fermilab

Tracks: Momentum and Time

- We see a broad range of e⁺ momenta from 350 3100 MeV
- Arrival times show g-2 oscillation, enhanced with mom. cut

🛟 Fermilab

Muon Decay Position

🚰 Fermilab

Extrapolate tracks to where they are tangential to magic radius:

Beam Position: Radial & Vertical Projections

Projections of 2D beam spot from previous slide onto radial and vertical directions:

Beam is not radially centred due to understrength kick.

🚰 Fermilab

Distribution is wide as the beam is oscillating

Beam Position: Radial Oscillation

Beam oscillates radially due to coherent betatron oscillations:

Beam Position: Radial Oscillation Amplitude

Amplitude of radial oscillation decreases as beam spreads out:

Tracker measurements of oscillation frequency and amplitude lifetime are important for calorimeter ω_a analysis

🛠 Fermilab

Beam Position: Vertical Oscillations

V Pitch Correction

🛠 Fermilab

Vertical oscillations are smaller and higher frequency, but we can still measure them:

Vertical motion means we need **pitch correction**, which is extracted using this tracker data

Example Systematic Study: Kicker Strength Scan

Observe beam becoming more centred and oscillation amplitude decreasing as we increase kicker strength

Example Systematic Study: Kicker Strength Scan

Observe beam becoming more centred and oscillation amplitude decreasing as we increase kicker strength

🚰 Fermilab

Calorimeter Comparison: Gain

Extrapolate tracks to calo for independent cross-checks Compare track momentum and calo energy for gain:

Calo Cross-checks

Calorimeter Comparison: Efficiency & Pile-up

Extrapolate tracks to calo for independent cross-checks

Take home messages

- 1. Tracker has many complementary physics goals
- 2. Tracking analysis is working and provides essential information on beam storage
- 3. We now have a new window into beam dynamics & calorimeter performance that wasn't available in E821

