

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Gain Systematics

Matthias Smith
MUSE General Meeting
22 Oct 2018

Motivation for Gain Corrections

- Use an energy cut to create standard "wiggle" plot
- Gain fluctuations smear this cut with possible systematic effects
- Rate dependent effects are anticipated which can cause early to late phase changes
- Goal: δG/G < 10^-3 over 700 µs fill

Laser Gain Correction Philosophies

Out-of-fill

- Why? To correct the long-term gain variation (mostly temperature dependence of the SiPMs)
- How? By firing the laser between fills
- In-fill
 - Why? To correct systematic gain shifts while positrons are present
 - How? By firing the laser within fills
- Double Pulse
 - Why? The SiPM gain drops after one pulse, so next could have lower energy
 - How? Separate DAQ mode to systematically vary E1, E2, dt

Out-of-fill Correction

- It corrects SiPM's gain fluctuations due to temperature variations using the out-of-fill pulses
- A correction factor for each of the 1296 calorimeters channels per subrun:

Correction wrt reference Run (same run used for energy calibration, 14395 for Run1)

Out-of-fill Correction Diagram

<SiPM>

<Source Monitor>

Out-of-fill Correction for 60h Dataset

Variation of the laser pulse amplitude:

Out-of-fill Correction for 60h Dataset

The corrections wrt run 14395:

In-fill Gain Correction

- Measure using laser pulses mixed with positrons in subset of fills
- Tunable Parameters
 - Prescale rate
 - Number of pulses per fill
 - Pulse Separation
 - Timing shift between subsequent probe pulses
 - Carves out gain function for any needed in-fill gain times and granularity

In-fill Gain Correction Procedure

- Build using laser data
- Find algorithm to model function
- Apply model to data

$$G_{ifg}(t) = \frac{SiPM(t)}{\langle SiPM \rangle_{oof,subrun}} \frac{\langle SM \rangle_{oof,subrun}}{\langle SM \rangle_{if,subrun}} \frac{\langle SiPM \rangle_{oof,dataset}}{SiPM_0}$$

Modeling the In-fill Gain Function

- Exponential decay
 - f(t) = g (1 a exp[(t-t0)/tau])

In-fill Gain Function Stability

- Built the in-fill gain function for two different datasets
- Functions similar but not identical
- Must be modeled separately for each set of stable configurations

Short-time Double Pulse Early Results

- Goal to build per crystal function
 - $G(E1, E2, \Delta t)$
- Summary Plots

Short-time Double Pulse Further Analysis

- Paolo Girotti analyzing datasets
- Data from March, new data in October

Long-time Double Pulse Preliminary Result

Being analyzed by Elia Bottalico

Summary

- Monitor and model systematic gain changes at different time scales
- Out-of-fill Gain Correction model implemented
 - Achieves long timescale goal of < 1%
- In-fill Gain Correction model implemented
 - Able to model to gain fluctuations to ~0.05% for 60h dataset
- Work for double-pulse corrections is ongoing