

The EDM at the g-2 experiment

Becky Chislett MUSE General meeting 22nd October 2018

Physics motivation

Fundamental particles can also have an EDM defined by an equation similar to the MDM:

Defined by the Hamiltonian:

$$\vec{d} = \eta \frac{Qe}{2mc} \vec{s}$$

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

 $\vec{\mu} = g \frac{1}{2m}$

UC

	E	В	μ or d
Р	-	+	+
С	-	-	-
Т	+	-	-

Standard scaling :

Provides an additional

source of CP violation

$$\frac{d_{\mu}}{d_e} \sim \frac{m_{\mu}}{m_e}$$

 $d^{}_{e}$ limits imply $d^{}_{\mu}$ scale of $10^{\text{-}25}\,e\text{-}\text{cm}$

But some BSM models predict non-standard scalings (quadratic or even cubic)

The muon is a unique opportunity to search for an EDM in the 2nd generation

The effect of an EDM

[•]UCL

If an EDM is present the spin equation is modified to:

Run at the "magic momentum"

 γ_{magic} = 29.3, p_{magic} = 3.094 GeV

An EDM tilts the precession plane towards the centre of the ring

> \rightarrow Vertical oscillation ($\pi/2$ out of phase)

$$\omega_{a\eta} = \sqrt{\omega_a^2 + \omega_\eta^2} \qquad \delta = \tan^{-1} \left(\frac{\eta \beta}{2a} \right)$$

Assuming the motional field dominates Expect tilt of ~mrad for d_{μ} ~10⁻¹⁹

An EDM also increases the precession frequency 3

The decay angle

The tilt of the precession plane is determined by the size of the EDM

$$\delta = \tan^{-1} \left(\frac{\omega_{\eta}}{\omega_a} \right) = \tan^{-1} \left(\frac{\eta \beta}{2a_{\mu}} \right)$$

However, the precession angle is reduced due to the Lorentz boost : Δx

The decay asymmetry

The measured decay asymmetry is further reduced because :

[•]UCl

- The positrons are not always emitted along the spin direction
- Detector acceptance

The lower momentum positrons have a larger decay angle asymmetry

However :

- Lower energy positrons contain less information about the muon spin direction
- The statistics drop off at lower energies

Measuring the EDM

The statistical uncertainty is inversely proportional to NA²

Number of muons

Asymmetry

UCL

Measuring the muon EDM

Several methods were used to measure the EDM at the g-2 experiment at BNL (E821)

The EDM can be measured

- Indirectly by comparing the measured value of ω_{a} to the SM prediction
- Directly by looking for a tilt in the precession plane

For the direct method 3 techniques were used at E821:

- Phase as a function of vertical position
 - Systematics dominated
 - Provides a useful cross check
- Vertical position oscillation as a function of time
 - Again systematics dominated
- Vertical decay angle oscillation as a function of time
 - Statistics dominated
 - Easiest improvement at E989

The following slides will discuss each of the methods, their uncertainties and possible improvements

The EDM at BNL – vertical decay angle

Look for an oscillation in the vertical decay angle of the positrons

Plot the number oscillation as a function of time modulo the precession period

Minimises period disturbances at other frequencies

Use the period calculated from the ω_a fit Fit to calculate the phase : $N(t) = e^{-t/\tau_e} (N_0 + W \cos(\omega t + \Phi))$

Plot the average vertical decay angle as a function of time modulo the precession period

Fit (fix phase from above):

$$\theta(t) = M + A_{\mu} \cos(\omega t + \Phi) + A_{EDM} \sin(\omega t + \Phi)$$

EDM oscillation comes in $\pi/2$ out of phase from the MDM

Î UC

Decay angle uncertainties

The measurement at FNAL

The new experiment has tracking detectors at 2 locations around the ring with greater acceptance than at BNL

Expect O(1000) times better statistics than at BNL

Reduce error by 1 order of magnitude quickly, approaching 2 orders of magnitude by the end

But need careful control of the systematic errors

UCI

The measurement at FNAL

The tracks are expolated back to the point of tangency as an approximation of the decay position

This introduces ~1mm offset in the radial position but has a much smaller impact on the vertical position and momentum

[•]UCL

truth - reco vertical position

The measurement at FNAL

For the EDM measurement it is the vertical decay angle that is necessary

The RMS is ~0.04 mrad

The accuracy of the measurement is determined by the error on the mean (dependent on statistics)

Larger angles are measured for tracks extrapolated a shorter distance (lower momentum)

Vertical Beam Oscillations

There are vertical oscillations in the beam which can be used to exercise the framework for fitting vertical oscillations

The average vertical position changes as a function of time with a lifetime of ~100µs

A gaussian is fit to each time bin to extract the mean position and the width

^ÎUCL

Vertical Beam Oscillations

A fourier transform of the mean and width shows the frequencies present in the distribution

The frequencies match up to the known beam frequencies from acceptance effects and betatron oscillations

UCI

Based on the extracted frequencies a fit to the distribution is performed to examine the amplitude, liftetime and phase of each The FNAL g-2 experiment is expected to improve upon the current limit by at least one, approaching two orders of magnitude

- There are already sufficient statistics to improve upon the BNL limit
- This improvement comes from the new tracking detectors with much greater acceptance
- The vertical fitting software is being exercised for fitting the betatron oscillations in the beam
- The EDM analysis of the current data is underway