

QA of the Mu2e calorimeter SiPMs

MUSE General Meeting October 23, 2018

Luca Morescalchi

Mu2e Custom SiPM

The Mu2e SiPM is composed of a 2x3 matrix (6 cells) of 6x6 mm 2 UV-extended monolithic SiPMs

13360-6050CS MPPC

Pixel pitch [µm]	50
Effective photosensitive area [mm]	6.0×6.0
Number of pixel	14400
Window material	Silicon resin
Gain (at 25° C)	2.4×10^{6}
PDE @ 310 nm	28%

We have chosen a modular SiPM layout to enlarge the active area and maximize the number of collected photoelectrons

QA Procedure

- The SiPMs QA is all located @ FNAL in a dedicated clean room.
- One batch is ~ 280 pieces. Delivery of one batch/month started from March 2018
- First Step: Visive inspection
- Second Step: Mechanical and dimensional check (100 µm tolerance)
- Third Step: Characterization
 - R1) a relative spread in Vop (operational voltage) between the sensor cells < 0.5%.
 - R2) a relative spread in the dark current at Vop between the sensor cells < 15%.
 - R3+R4) a gain x PDE(310 nm) at Vop > 2*10^5 for each cell.

Sensors that don't meet the requirements are discarded.

• A random subset of 15 devices/batch is used to evaluate MTTF, while other 5 sensors/batch are used for neutron irradiation

12/9/14

What are we measuring?

- QA requires 4k*6 = 24k full characterizations -> an automatized system is needed to speed up the measurement process.
- Test station able to measure (1.2 mins/cell) at three temperatures (-10°, 0° and 20° C) :
 - **1. V**_b by fitting the I-V curve;
 - 2. Idark @ Vop directly by the I-V curve;
 - **3.** Gain x PDE @ Vop by the ratio of the currents pulled by the cell and a reference sensor, while illuminating both with a stable and uniform light;

Experimental Setup for QA

Station Labview Interface

• The station is fully automatized and is controlled by a Labview software. In order to start a new run, the user has to modify only:

Shif info Please, insert shifter name and batch		SiPM identification numbers from Hamamatsu. IMPORTANT: elements set to 0 are not tested	
MU2e	Shifter Name Genoveffo	date/time	board 5 0 315 400 405 310 489 board 4
Directory path	Data results location		÷0 398 369 406 486 370
S El		2	board 3
Output directory			* 0 399 397 407 410 481
& E:\batchId_1_20180324_205315\temp	perature_20C\batchId_1_SiPMId_398_T_2	oc	board 2
PIC state I-V scan LED state	Diagram state controller PM under test cell under test 398	End run: socket T [C] 20,25 resource name	+ 0 483 360 408 409 504 board 1 + 0 259 394 359 404 485

• No particular knowledges needed to run the system..

Measurement of Breakdown Voltage

To extract the breakdown voltage, a 150 points voltage scan in a 2.5 V range is performed and the obtained curve is fitted with :

$$I(V) = \begin{cases} I_0 + C \times (1 - e^{-p \cdot (V - V_{\rm br})} \times (V - V_{\rm br}) & V > V_{\rm br} \\ I_0 & V < V_{\rm br} \end{cases}$$

- wnere:
 - V is the bias voltage
 - Vbr is the breakdown voltage
 - lo is the current before the breakdown
 - P is the Geiger probability -
 - C is proportional to the number of the free carriers (thermal + optical)

It is valid under 2 assumptions: ٠

- Afterpulse and crosstalk are negligible
- We are far from the 'second breakdown' zone

A. Nagai, N. Dinu, A. Para, "Breakdown voltage and triggering probability of SiPM from IV curves"

Breakdown Voltage Vs sipmID

• There is a clear dependance of the Breakdown Voltage on the sipmID, probably due to different silicon wafers..

8

di Fisica Nucleare

Comparison with Hamamatsu

• Good agreement with Hamamtsu at 20 C; 0 C and -10 C are inside a 1 deg T stability

9

Mu₂e

Stability of Breakdown Voltage

Breakdown Voltage RMS

• Looking at the QA criteria:

• All the tested sensors still well below the 0.5% limit!

6/26/18

11

Mu₂e

Stability of Dark Current

• The idark RMS measurements at 20 C is ok, while at -10 C and 0 C we do not have enough resolution

Dark Current RMS

• Looking at technical specification: Idark RMS of the 6 cells in the SiPM array @ VOP < 15% @ 20^{0:}

• It seems a tail effect

L. Morescalchi

13

Mu₂e

Gain x PDE Measurement - Light Profile

• The light of the LED is not uniform on the sensors plate but has a gaussian profile:

 A good approximation of this profile has been obtained by fitting the current of the sensors biased at the operative voltage.. residuals have an RMS ~ 3%

1/3/18

Gain x PDE Measurement

• The relative Gain x PDE is so be obtained by normalizing the incident light on the sensor with the one on a reference sensor:

$$\text{Gain} \times \text{PDE} = \frac{I}{I_{ref}} \times \frac{LightProfile(x_{ref}, y_{ref})}{LightProfile(x, y)} \times (\text{Gain} \times \text{PDE})_{ref}$$

Magenta: -10° Black: 0° Blue: 20°

G x PDE ref = 4.e10^5

Conclusions

- The QA process for the Mu2e calorimeter Silicon PhotoMultipliers is running smoothly since the beginning of March
- The analysis procedure is stable
- We tested 7 batches, more than half of the total
- 3 % of tested SiPMs rejected (high idark RMS)
- The qualification of all the photosensors will end in middle 2019

6/26/18