WP4 **Calorimeter Software** State of art

R.Donghia, LNF-INFN **MUSE** network general meeting October 22-24, 2018

Istituto Nazionale di Fisica Nucleare

Main tasks

- Improvement in calorimetry geometry description
 - Following CAD files
 - Good state achieved
 - Code clean up, few things missing
- Summary of Module-0 TB data analysis
 - New test to check CR based calibration
- Cosmic rays calorimeter calibration
 - new Module-0 test

Calorimeter geometry

Calorimeter geometry

CAD drawing

Geometry improvement Geant 4

Full disk separated in four components: front plate + crystal case + back plate + crates

MUSE SBMeeting | R.Donghia

Carbon fiber

Front plate is composed of the

- following layers:
- carbon fiber cover
- aluminum foam
- carbon fiber cover

The aluminum pipes are inside the foam, the manifold is outside

(dimensions/positions taken from CAD file)

Crystal case

Inner ring, steps (hollow), crystals, steps, outer ring and outer rails Inner steps are hollow, outer steps are plain Two cooling pipes outside the outer ring

Crystal unit = Crystal + wrapper + plastic ring at both ends

Ideal crystal size/position, realistic size/ location as upgrade later

22/10/18

MUSE SBMeeting | R.Donghia

Back plate

Back plate has holes with SiPM inside

Cooling strips, FEE cards and copper box at the back Main cooling pipes (no connectors between strips and cooling pipe)

A lot of small pieces are not included (part of FEE card in hole, small connectors), but this should have a minimal impact on the simulation

Back plate (2)

Crates around disk, following CAD drawing specifications: front/bottom shield, electronics,

Summary

- 5 mm thick Carbon-fiber inner ring
- Inner step-margins made of Al honeycomb
- **source-plate**: sandwich of 2 Carbon-fiber panels 3mm thick+21.75 mm thick Al honeycomb for supporting the Al pipes
- Al manifolds for the source plate
- 100 mm thick Al outer ring+outer margins made of Al
- **back-plate** 15 mm thick made of PEEK (with holes for SiPMs)
- SiPM front-end **cooling lines**->Cu bars 5mm thick
- Faraday cages for the FEE boards, made of 0.7 mm thick Cu
- Fixed material composition of the crate shields

New dose estimates study

Background source simulated:

✓ electrons from μ decay in orbit in the stopping target (DIO)

- ✓ deuterons from the stopping target (DEUTERON)
 - ✓ neutrons from the stopping target (NEUTRON)
 - ✓ photons form the stopping target (PHOTON)

✓ beam flash (FLASH)

✓ μ out-of-target (OOT)

✓ **protons** from the stopping target (PROTONS)

Dose: crystals

disk 0

disk 1

Estimated dose [krad] in the crystals assuming 1 year of run

MUSE SBMeeting | R.Donghia

Estimated dose [krad] in the crystals assuming 1 year of run

MUSE SBMeeting | R.Donghia

Dose: SiPM

disk 0

• scale down by a factor around 2 the estimated dose on crystals

Estimated dose [krad] on SiPMs assuming 1 year of run

Neutron: SiPM

Expected neutron fluence at 1-MeV equivlent energy in the SiPM region

Dose: Summary

The expected dose and neutron flux was evaluated for all the calo active components using the latest calorimeter model in the simulation:

	Max dose [krad/year]
crystal	6
SiPM	5
FEE	5
DIRAC	0.5
Mezzanine	0.2

Data analysis concluded – Time resolution

Next step: integrate these reults in Mu2e software

Cosmic Rays - simulation Muons generated on a plane at ~11 m above the calorimeter

- 0.5 GeV < E < 500 GeV
- $0^{\circ} < \theta < 90^{\circ}$:

Trigger (15 Hz):

- at least 3 crystals with $E_{tot} > 6 MeV$
- energy deposit above 1 MeV for clustering

Muon trajectory

- Linear fit in the transverse plane, energy weighted least square method
- $0.6 < \chi^2 / ndof < 1.4$

Cosmic Rays - simulation

- Same TRG
- For each event, **linear fit** to time vs relative distance of the cells, imposing light velocity. **Common T0 subtracted to all cells**
- Gaussian fit on residuals of each channel
- Extract first calibration set from the fit (Tcorr)
- Iterative procedure, subtracting residuals and repeating the fit

Ch0

Sen 3

Ch6

Adv1

Ch13

Sen35

Ch3

Ham 9

Ch10-11

Ham11

Ham13

Plastic scintillator

Ch1

Adv9

Ch7-8

Ham80

Ham81

Ch14

Adv24

Ch4-5

Sen 12

Sen 13

Ch12

Sen43

Ch2

Ham17

Ch9

Sen 25

Ch15

Ham32

Calorimeter calibration

Cosmic Rays - Data

Cosmic ray run using 16 channels of the Module-0

- 13 crystals, 3 with double readout
- New DAQ system!
- TRG:
 - plastic scintillators counters
 - Offline: cut on top layer energy deposit

Same TB analysis and same MC procedure

Charge: wf integration in a 250 ns range

Cosmic Rays - DATA

Cosmic Rays - data

After 5 iterations the correction is comparable with zero

Cosmic Rays - data

Offline filters study

There has been substantial improvements in the pure track and track-calo triggers:

- Track trigger: latest improvements have decreased running time around 3 ms
- **Dual track calo trigger**: on-going work to merge sequences with track / calo triggers
- Calorimeter trigger: current algorithm is fast (<1 ms) with ~90% efficiency

Additional physics trigger $\rightarrow \Delta L=2$, calibration, monitor, off-spill

Dual Calo TRG Quick review

Select tracker hit based on the calorimeter cluster time / position and try to reconstruct the track using a semi-analytical model

16

CE MIXED TRACKER-CALORIMETER EFFICIENCY vs REJECTION

preselection	CE efficiency	BKG rejection
Good tracks	90.9±0.1%	102±2
Good tracks matching a cluster with E>50 MeV	96.2±0.1% 95.3±0.1%	570±30 1030±70

TIME PERFORMANCE

TimeTracker printout (ms)	Min	Avg	Мах		
makeSH:StrawHitReco	0.4	1.3	2.3		
FilterEcalMixedTrigger	1.0	2.1	5.7		
10000 events on mu2ebuild01 Average Total: 3.5 ms					

Subtracting

Straw Hit position reconstruction (1.3 ms) and ECAL waveform peaks search (1.4 ms) We should able to reach ~0.7 ms

6

Good progress done on the calorimeter simulation

- Most of the components included in geometry simulation
 - Few small pieces missing (connectors, FEE pin hole...)
- New dose study performed
 - Waiting fro tracker shielding/geometry updates
- Module0 data anlysis concluded
 - It is needed to include the results in Mu2e framework
 - Additional cosmic ray test performed to validat the calorimeter calibration procedure
- Offline filters/triggers study ongoing