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1. Definitions, historical remarks and tools we need

1.1 Definitions and tools we need
1.2 Historical remarks

We will consider area-preserving mappings of the plane

0q'/oq 94 /op|
det [8/9’/867 ap'/op, =L

Identity, Id Rotation, Rot Reflection***, Ref
10 cos —sinf cos20  sin26
01 sinf cos6 sin20 — cos?20
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1. Definitions, historical remarks and tools we need

1.1 Definitions and tools we need
1.2 Historical remarks

*The reflection is anti area-preserving transformation, det J = —1.
**In addition, Ref? = Id (or Ref = Ref ). Transformations which
satisfy this property are called involutions.

More on reflections and rotations

Rot(0) o Rot(¢) = Rot(f + ¢)
Ref(f) o Ref(¢) = Rot(2[0 — ¢])
Rot(0) o Ref(¢) = Ref(¢+ 10)
Ref(¢) o Rot(0) = Ref(¢ — 36)

)
)
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1. Definitions, historical remarks and tools we need
ons and tools we need

al remarks

A map T in the plane is called integrable, if there exists a non-
constant real valued continuous functions K(q, p), called integral,

which is invariant under T:

Y(g,p):  K(g,p)=K(d,p)

where primes denote the application of the map, (¢’, p') = T(q, p).

Example. Rotation transformation

Rot(f): ¢’ = q cosf — psiné
p'=qsinf+ p cosf

has the integral (g, p) = ¢° + p°.
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1. Definitions, historical remarks and tools we need 71,11 Befiiiens and el ne e

1.2 Historical remarks

If @ and 7 are commensurable, then transformation Rot(#) has in-
finitely many invariants of motion.

Example. Rotations through angles £7/4 has another invariant

K(q,p) = ¢*°p* +T(q* +p?),  VI.

Rotn/4)  [F<0] =0, r>0p
P M\

/]JL@&L
=

14

mx
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1. Definitions, historical remarks and tools we need

Thin lens transformation, F, and nonlinear vertical shear, G,

E: ¢ =gq, . ¢ =gq,
p'=p+f(q), = —p+f(q),

F = G o Ref(0), G = F o Ref(0).

Transformation G is anti area-preserving involution, G2 =1d.
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1.2 Historical remarks

A map T is said to be reversible if there is a transformation Ry,
called the reversor, such that

T'=RooToRy

In the important special case, where Rg is involutory
T 1=RooToRy o RpoToRgoT=Id.

Hence, if we set R; = Rp o T, we see that R; is also involutory.
Moreover we have

T=RgoRy or T ! =R; 0Rp

so that T is the product of two involutory transformations.

Tim Zolkin Mappings with polygon invariants



1. Definitions, historical remarks and tools we need

1.1 Definitions and tools we need
2

1.

Historical remarks

Arnold-Liouville theorem

Integrable map can be written in the form of a Twist map
Jn+1 = Jn,
Ont1 = Op+27v(J) mod2m,

where |v(J)| < 0.5 is the rotation number, 6 is the angle variable
and J is the action variable, defined by the mapping T as

1
= — dg.
J 5 qu

Poincaré rotation number

Rotation number represents the average increase in the angle per
unit time (average frequency)
. T"(0) -6
v= lim ———.

n—o0 n
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1. Definitions, historical remarks and tools we need
1.1 Defi

ions and tools we need
1.2 Historical remarks

Theorem (Danilov)

Let T : R? — R? be the area-preserving integrable map with invari-
ant of motion K(q,p) = K(q',p’). If constant level of invariant is
compact, then a Poincaré rotation number is

[ )

where integrals are assumed to be along invariant curve.

K(q,p) = inv M(a,p;K) Hklp,ait]
p p t
¥ - ":
[
0] ; : : .
\\. . \“
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al remarks

|. Contribution of Edwin McMillan

From "A problem in the stability of periodic systems’ (1970)

In the Spring of 1967 I attended a theoretical seminar at which Pro-
fessor René de Vogelaere spoke concerning the stability of non-linear
periodic systems. The motivation was storage rings, with beams focused
by azimuthally varying fields (“strong focusing”); the question, the
effect of non-linear terms on an otherwise stable system; the presenta-
tion I found utterly fascinating. It recalled another seminar I attended
at Princeton* over a third of a century earlier, at which G. D. Birkhoff
discussed the stability of the solar system. I remember none of the
detail of that earlier seminar, but I have a strong memory of how an
apparently simple situation led rapidly and unavoidably into a maze
of complexity, leaving the original question “Is the motion of the
system stable for infinite time?”” unanswered.
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1.1 Definitions and tools we need

1.2 Historical remarks

I-1. McMillan form of the map

McMillan considered a special form of the map
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1.1 Definitions and tools we need

1.2 Historical remarks

1D accelerator lattice with thin nonlinear lens, T = F o M
M : [y}/_[cosd%l—asind) B sin® ] [y}

3% —v sin® cos® —asind| |y

e DT =P)+ )

where «, 5 and « are Courant-Snyder parameters at the thin lens
location, and, ® is the betatron phase advance of one period.

Mapping in McMillan form after CT to (q,p), T = F o Rot(—7/2)

a=yY,
p=y(cos®+ asin®)+y[S sind,

F(q) =2q cos® + S F(q) sin® |
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1.1 Definitions and
1.2 Historical remarks

Turaev theorem

INSTITUTE OF PHYSICS PUBLISHING NONLINEARITY

Nonlinearity 16 (2003) 123-135 PII: S0951-7715(03)35323-X

Polynomial approximations of symplectic dynamics
and richness of chaos in non-hyperbolic
area-preserving maps

Dmitry Turaev
Recommended by C Liverani

Abstract

It is shown that every symplectic diffeomorphism of R>" can be approximated,
in the C*-topology, on any compact set, by some iteration of some map of
the form (x,y) — (y+1n,—x + VV(y)) where x € R", y € R", and V
is a polynomial R” — R and 5 € R" is a constant vector. For the case of
area-preserving maps (i.e. n = 1), it is shown how this result can be applied to
prove that C"-universal maps (a map is universal if its iterations approximate
dynamics of all C"-smooth area-preserving maps altogether) are dense in the
C"-topology in the Newhouse regions.
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1.1 Definitions and tools we need

1.2 Historical remarks

[-2. McMillan condition for invariant curve

a. Consider a decomposition of map in McMillan form
T = F o Rot(—7n/2) = G o Ref(0) o Rot(—7/2) = G o Ref(7/4).

b. Lines p = g and p = f(q)/2 are sets of fixed points for reversors.

c. If K(q, p) is invariant under transformation T, then it is invariant
under both, Ref(7/4) and G:

K(gq,p) = K(p,q),  K(a,p) = K(q,—p+f(q)).

d. Solving for p = ®(q) from the invariant K(q, p) = const

f(q) =(q) + 2 '(q)|
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1. Definitions, historical remarks and tools we need

1.1 Definitions and tools we need
1.2 Historical remarks

Example. Herion map, f(p) = 2 p°.

Heron map
M: ¢ =p,
p=—-q+2p°
Symmetry lines:
p=aq, p=q.

Fixed points:

(0,0), (1,1).
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1. Definitions, historical remarks and tools we need 1.1 Definitions and t

1.2 Historical remarks

Suris theorem and recurrence x,.1 + x,_1 = f

INTEGRABLE MAPPINGS OF THE STANDARD TYPE

Yu. B. Suris

upc 517.9
Fngy = 23 + 2,y = £F (2n, 8), (1)
Pz, E)=§,ﬁﬂ"/k(r). lel <eo (2)
THEOREM. Equation (1) has a nontrivial symmetric integral of the form
@ (@, 5, 8) = Oq (2, 1) + ey (z,0), (4)

holomorphic in the domain [x = y| < &,, in the following and only in the following three
cases:

a)  F(z,€) = (4 + Bz + Ca* + Da®)/(1 — e (E + Caf/3 + Da%2)),
Do 9) = (= 0 @)= —A @+ )2~ Bayl2 = Cayfat 6

1 €
2 mz—(Asinsz‘Bcosmz+Csin2mz ~+ D cos 2wx)
6) F(z, &)= o Aretg

— % (4 cos oz — B sin oz - C cos 20z — D sin 20z - E) | '
@y (x, y) = (1 — cos 0 (z — y))/w?, @) (z,y) = (4 (cos w0z + cos wy) —
— B (sin wz + sin wy) + C cos o (z + y) — D sin o (z + y) + E cos o (z — y))/20
1+ ae (Bexp (—ax) -+ D exp (— 2az) — E)
1 — as (4 exp (az) 4 C exp (2az) 4 E) i

1
B) F(2,8) =5z In

Dy (2, y) = (cha (z —y) — 1)/a?, Oy (z,y) = (—A4 (*F + ) +
+ B (7% L M) — CeMIHY) | Dem™XHY) _ 3F ch a (z — y))/2a.
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1.1 Definitio

1.2 Historical remarks

lll. Recurrence x,11 + X,-1 = | Xy

THE AMERICAN
MATHEMATICAL MONTHLY

Volume 90, Number 8 October 1983

ADVANCED PROBLEMS
Solutions of these Advanced Problems should be mailed in duplicate to Professor G. L. Alexanderson, Department

of Mathematics, University of Santa Clara, Santa Clara, CA 95053, by February 29, 1984. The solver’s full
post-office address should be on each sheet.

6439. Proposed by Morton Brown, University of Michigan.

Let {a,) be a sequence of real numbers satisfying the relation a,,,, = |a,| — a, . Prove that
{a,) is periodic with period 9.

THE AMERICAN
MATHEMATICAL MONTHLY

Volume 92, Number 3 March 1985
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1.2 Historical remarks

. Periodic homeomorphism of the plane (1993)

continuum theory
and dynamical systems
A Periodic Homeomorphism of the Plane

MORTON BROWN  University of Michigan, Ann Arbor, Michigan
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1.1 Definitions and tools

1.2 Historical remarks

V. Letter from Professor D. Knuth

"When I saw advanced problem 6439, I couldn’t believe that it wag
‘advanced’: a result like that has to be either false or

elementary

"But I soon found that it wasn’t trivial. There is a simple
proof, yet I can’t figure out how on earth anybody would discover
such a remarkable result. Nor have I discovered any similar

recurrence relations having the same property."”

"So in a sense I have no idea how to solve the problem properly.
Is there an ’'insightful’ proof, or is the result simply true by

chance?"
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1.1 Definitions and to

1.2 Historical remarks

VI. R. Devaney's Gingerbreadman map, f(p) =

Physica 10D (1984) 387-393

North-Holland, Amsterdam
A PIECEWISE LINEAR MODEL FOR THE ZONES OF INSTABILITY OF AN
AREA-PRESERVING MAP

Robert L. DEVANEY*

Department of Mathematics, Boston University, Boston, Mass. 02215, USA
Received 14 March 1983

In this note we study the global behavior of the piecewise linear area-preserving transformation x, = 1 — y, + |x;

of the plane. We show that there are infinitely many invariant polygons surrounding an elliptic fixed point. The regions between
these invariant polygons serve as models for the “zones of instability” in the corresponding smooth case. For our model we
show that some of these annular zones contain only finitely many elliptic islands. The map is hyperbolic on the complement
of these islands and hence exhibits stochastic behavior in this region. Unstable periodic points are dense in this region

612345 o

fFig. 2. 10,000 iterates of a single point in the region A, The

Fig. 3. The outer region is the ergodic region B;; the inner
ner boundary of A, is the outer boundary of B,

Tegion is B, as shown in fig. |
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1.2 Historical remarks

Gingerbreadman and Rabbit maps
qg=p
p'=—qx|p|+1
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1.1 Definitions and tools we need

1.2 Historical remarks

V. Lozi and Hénon maps

Mg: g =p My: g =p
pP=bg+1-alp| p'=>b
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2. Periodic integer maps with polygon invariants

2. PERIODIC INTEGER MAPS WITH POLYGON INVARIANTS
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2 1 Linear maps with integer coefficients
.2 Maps linear on two half planes

2. Periodic integer maps with polygon invariants

2.1 Linear maps with integer coefficients

Crystallographic restriction theorem

If A is an integer 2 X 2 matrix and A" = Id for some natural n € N,
then

\n:1,2,3,4,6\

corresponding to 2-, 3-, 4- and 6-fold rotational symmetries.
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2.1 Linear maps with integer coefficients
29

2. Periodic integer maps with polygon invariants 30 (Vs s e o (T s

Transformations with a period n = 1,2 are simply +Id, which can
be considered as a special cases of rotation through the angles 0
equal to 0 or m,

Rot(0) = B (1’] Rot () = [‘01 _01]
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2.1 Linear maps with integer coefficients
29

2. Periodic integer maps with polygon invariants Mapallingar wo half planes

Three other cases are given by mappings in McMillan form

My: ¢ =p, Mg: ¢ =p, M,: ¢ =p,
p=—q—p, p=—q, p=—-q+p,

B+ oyt
3| AN /
4 0 X X
2, ' L '
i 1 / 2
n=4 6
‘ T o ov=14 - T v=1/6
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2.1 Linear maps with integer coefficients

2. Periodic integer maps with polygon invariants 2.2 (ke ez @m G (el s

2.2 Maps linear on two half planes

CNR (Cairns, Nikolayevsky and Rossiter) theorem

Suppose that M is periodic continuous map of the plane that is
linear with integer coefficients in each half plane ¢ > 0 and g < 0.
Then M has period

n=1,2,3,4,56,7,8,9, or 12.
THE AMERICAN MATHEMATI
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Linear maps with integer coefficients
Maps linear on two half planes

j
2. Periodic integer maps with polygon invariants 5;

n=9
v=2/9
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3. Maps with polygon invariants

3. MAPS WITH POLYGON INVARIANTS
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3. Maps with polygon invariants

3.1 First good idea

Mappings E, F, G and D, H are in McMillan form with force
f(p)=ap+Blpl, aEtBel
What about affine generalization?
f(p) =ap+pBlp[+d.

Proposition 1. The change of coordinates (g, p) — (d g, d p)
allows to reduce problem to cases d = +1:

f(p)=ap+Blp|£1 for d=0.

Proposition 2. The change of coordinates (q, p) — (—g, —p)
allows to rewrite the force function as

f(p)=ap=£plp|+1 for d==+1.
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3. Maps with polygon invariants

3.1.1 Zoo maps: Octopus and Crab
qd=p
p'=-q—2p=£|p|+1
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3. Maps with polygon invariants

3.1.2 Nonlinear integrable maps with polygon invariants

Mis and M1s : q = p,
28 38

+3

pr=-q+1 ypr g

Mi2 and M1z : q = p,
37 47

+
Mi: and M1: q9 = p,
45 65
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3. Maps with polygon invariants

Integrability and symmetries, f(q) = ®(q) + 7 1(q)

M2 K(q.p) =a (da/Op)™" —(da/dq)~!
51 =—« —q — 1
S p=—« —p -1 —
S3:g=14a« g—1 — -1
Sa:p=1+a p—1 1 —
S5: p=—-q—« —q-p -1 1

S+ 54 =1, qg >0,
S4+S5=1—¢q, g<0.

f(q):1+|q|_q:{
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3. Maps with polygon invariants

Poincaré rotation number

q 14+a q
/ dt:/ dp+ dg=1+2aq,
q P —a

A,_JH,_/

Sy
1+a 1+o —Q 0 —Q
%dt —/ dp+/ dg — / dp—/ dq—/ dg
1+ 1+« 0
—_—— ——  —
54 53 52 55
—4+7a.
_1+2a
4+ 7a
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3. Maps with polygon invariants

Action-angle variables

1/2

13

1/4

Ini1=Jp = J(a)
Opi1="0,+27mv(a) (mod 27)

3/8

2/7

Tim Zolkin

27t/3

Tt/2

/3
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3. Maps with polygon invariants

Perturbation of integrability

\ vQQ‘§ ‘\
NN

-4 -2 0

Tim Zolkin Mappings with polygon invariants



Application 1. Cohen-like mappings, |p| — /p? +1







3. Maps with polygon invariants

3.1.3 Coexisting stochastic and integrable behavior
Mau: :

lp|=3p

-1 0 1 2 3q -10 -5 0 5 q
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3. Maps with polygon invariants

Perturbations of M

11
67

1 1
S@1p-1pD+1 E(Spf\/pz+’l)+1
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3. Maps with polygon invariants

3.2 Second good idea: piecewise linear f with 3 segments

m Piecewise linear and continuous
m Integer coefficients

m 3 segments

fla) flQ)

’ ’
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3.2.0 Pots and shards
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3. Maps with polygon invariants

3.2.1 One layer maps 1

24+« o «
U= _
44+ 4q 444« 245«
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3. Maps with polygon invariants

3.2.1 One layer maps 2

24+« 2+2«a
UV =
6+4«o 6+7«

Tim Zolkin
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24+«
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3. Maps with polygon invariants

3.2.2 Two layer maps

2+«
V=
6+5a

Tim Zolkin

24+«
V=
9+5a
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3.2.3 Two layer maps with islands

242« 442«
= — V= ——M—
10+ 9« 16 +9«
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3.2.3 Two layer maps with islands 2

2+ 11«
V= ——
4424«
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3. Maps with polygon invariants

3.2.4 System with discrete parameter 1

1 2n+«
Vv = V=
1= 6+ a 27 20 12n+6a

n=2 n=3

vy = 0 vy = % Vg = % 0 %

V1= 796a af =1 af =3 af =3
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3. Maps with polygon invariants

3.2.4 System with discrete parameter 2

b 1+« — 24+2n+«
' 6+5a 7 10+12n+6a
5
n=— n=20 n=1 n=2
V():% V():% 1/0:% 1/0:%
1/1:82;;3“& a*:% a*:% a*:%
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3.3 Third good idea: special periodic condition on f

Vq:  flg+T)="f(q)+f(T)—F(0)]
@ . i@ .

) d |
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3.3.0 f with period made of 2 segments: Chaos in cell
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3. Maps with polygon invariants
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3. Maps with polygon invariants

Application 2: Can we better understand the reality?
Hénon map, f(q) = aq + bq>.
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3. Maps with polygon invariants

Application 2: Can we better understand the reality?
Hénon map, f(q) = aq + bq>.
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3. Maps with polygon invariants

Application 2: Can we better understand the reality?
Chirikov map, f(q) =2q+ asing.
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3. Maps with polygon invariants

Application 2: Can we better understand the reality?
Chirikov map, f(q) =2q+ asing.
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