## 



# **PIP2 MEBT Kicker Review**

Greg Saewert Chopper Review Meeting 2 August 2018

# Outline

- Requirements overview & system design approach
- Challenges
- Design details
- Electrical performance results
- Issues to be addressed

# **Kicker Requirements**

- Kick individual bunches (bunch-by-bunch)
- Rise/fall time 4.0 ns (5-95%) maximum between bunches
  - This leaves 2.15 ns flattop to both kick and pass
- Kicking scheme
  - +/- 500 V to kick beam out, 0 V to pass
- Kick an arbitrary pattern for Booster delivery (at 20 Hz)
  - 45 MHz average switching rate during 550  $\mu$ s macro-pulse
  - 0.5 MHz overall average switching rate
- Beam test modes
  - 81.25 MHz switching rate for 10's of  $\mu s,$  at 20 Hz
  - Any arbitrary pattern having switching rates <81 MHz and <0.5 MHz average</li>



# **Kicker System**



# **Overview – the Helix**

- Dual 200 Ohm helical, traveling wave structure
  - $-200 \Omega$  (as opposed to typical 50) lowers drive current and power making fast switching conceivable
    - <<10 Watts RF skin effect losses in the vacuum</li>
  - Symmetric and broadband structure
    - Potentially low internal reflections
- Thermal design
  - ~0.1 gpm water-cooled ground tube for 40 W beam loss
- Includes protection electrodes
- Challenges
  - Match propagation to beam velocity
  - Reflections
    - Discontinuities between helix, 200  $\boldsymbol{\Omega}$  strip lines and load
  - Frequency dependent effect (referred to as "dispersion")
    - Cause: inter-winding coupling and winding capacitance to ground



# **"Dispersion" Effect**





# **Addressing the Helix Design Challenges**

- Propagation time is matched to beam beta by a tuning procedure
  - Both prototype helices were tuned to -0.5% of ideal
- Reflection issues
  - Microstrip lines in and out are designed for 200 Ohms
    - Feed-through to strip line to helix reflections are low
  - Helix low impedance end-effects cause reflections
    - Coupling between windings raises strip line impedance from ~140 to 200  $\Omega$  ... but the turn at each end lacks the coupling
    - Modeling used to find suitable compensation scheme
    - Ground tube stepped 1-turn, both ends, raises impedance
    - Reflection reduced about 30%
  - Load reflection can be compensated with small series inductance
  - Switch-driver close to feed-through (and no coax) reduces reflections
- Dispersion effect reduction
  - Helices are located away from ground surfaces by 1.75"
  - Helix dimensions were chosen to be slightly faster than beam beta
  - Adding inter-winding capacitive plates provides compensation
  - Compensation decreases dispersion and increases propagation time

🛠 Fermilab

• Integrated value of dispersion voltage peaking reduced to  ${<}5\%$ 

# **Overview – Helix Drivers**

- Kicker drivers are fast switches
  - One single-switch driver per helix, opposite voltage polarity
- Apply ±500 V to kick beam out, 0 V to pass
- Switches are series-connected FETs to share switching losses
  - Total switch switching loss from Cds, 3 FETs in series:

$$3 * \frac{1}{2}Cds(\frac{v}{3})^2 f = \frac{1}{3} * \frac{1}{2}CdsV^2 f \quad (Watts)$$

- Switch construction
  - Each switch fully isolated
  - Each FET is individually gated simultaneously
- Driver design challenges
  - Switch on and off fast enough
  - Custom FET gate driver required for this switching speed
  - Determine FETs reliability to handle thermal cycling
  - Handling switching losses for Booster requirement
    - 1  $\mu$ J switching loss per cycle capacitive switching loss
    - 45 Watts are dissipated per FET at 45 MHz rep rate

# **Addressing the Driver Design Challenges**

- Photonics laser and transmitter provides precision triggering
  - The generator signal gates laser
  - Splitters deliver triggering to all FETs simultaneously to photo detectors on each GaNFET driver board
- Switching speed is obtained using GaN FETs (GaN Systems, Inc.)
  - GS66502B: 7 Adc, 15 A pulsed; 650 V; 20 pF d-s, 65 pF g-s
  - GaNFET driver circuit kept as small as conveniently possible minimizing parasitics
- Custom FET gate driver circuit designed with operating margin
  - Turn-on time is settable to <2 ns</li>
  - 3-FET switches operate at 500 V above 90 MHz; and 81.25 MHz at 600 V
  - A Calibration procedure used to match FET timing
    - Both turn-on and -off delay are matched to +/-100 ps
    - Allowance remains for shifts due to time and temperature

# Addressing the Driver Design Challenges (cont.)

- FET reliability test: 3-FET switch was operated for 4 months 24/7
  - 500 V bias, 45 MHz for 550  $\mu$ s at 20 Hz (Booster ave. switching rates)
  - No evident timing variations
  - Demonstrates GaN FETs are not overly stressed
- Turn-off time reduced to <4 ns with compensation:



- 500 V on the plate assumes 100% efficient kicker
  - Helices are 95-97% efficient
  - 3 V drop in the switch
  - Required bias voltage is ~528 Vdc
  - Our present limit is 500 Vdc bias voltage



#### **Helical kickers**





8/2/2018

G. Saewert | PIP-II Kicker Review

# **Dual-Helix Assembly**





# **LLRF's Arbitrary Waveform Generator**

- 1's/0's in a file define kick/pass switching pattern are downloaded to the Generator
- Phasing as well as turn on/off edge adjustments can be set with ~40 ps resolution
- The arbitrary 550 μs Booster pattern was used at PIP2-IT:



#### The File

## **Electric to Fiber Transmitter & Switch**



## **Photonic Transmitter Chassis**

#### Photonic transmitter:





# **GaNFET Driver Circuit**

#### **GaNFET Gate Driver**



- Photo detector
- 1 GHz opamps: gain (x2)
- 280 MHz comparator

Turn-on & Turn-off delay adjustment

Shields not installed

size: 2.5" x 1.75"

 $\bullet$ 

•

# **GaNFET Driver Circuit PCB**



# **GaNFET Driver Circuit: AC/DC Power**



- 3.5 V, 500 kHz AC in
- 3 Well-regulated DC voltages out

## The Switch-Driver Chassis (Photonic Gate Version)

This Version has two switches +/- 600 Volts, in one chassis. Coax cables connected outputs to the feed-throughs.



#### 🛟 Fermilab

## **Driver as installed now in the MEBT**





## **Driver as installed now in the MEBT**



20 8/2/2018 G. Saewert | PIP-II Kicker Review

## **First 200 Ohm Chopper Installed at PIP2-IT** (Transformer Gate Version)

Drivers

185  $\Omega$  Loads

Assembly shown similar to intended final version

 Switch Driver assembly bolted to the helix plate





## **Switch performance**

Switching at 81 MHz, 10 us bursts: 600 Vp-p, 4 ns / div



Switching at 45 MHz average rate for 600 us: 600 Vp-p, 100 us / div



8/2/2018

**‡** Fermilab

## ±500V Bias at 81.25 MHz, 20 Hz Repetition Rate

#### Photonics triggered driver version as operated at PIP2-IT

#### Individual Helix Waveforms

**Differential voltage** 



G. Saewert | PIP-II Kicker Review

## **±500V Bias, Arbitrary Pattern**



**‡** Fermilab

## Switching 1100 V, 45 MHz for 600 $\mu s$ at 20 Hz

#### Transformer-triggered Switches



**Upper Helix Lower Helix** Difference Voltage Simulated beam **bunches** Vertical ≈ 220 V /div Horizontal: 100  $\mu$ s /div



#### Switching at 81.25 MHz, ±600 V; kick every other bunch



## Switching at 40.625 MHz, ±600 V; kick 2 pass 2



Vertical ≈ 220 V /div

Fermilab

**Lower Helix** 

Difference

Voltage

Horizontal: 20 ns /div

G. Saewert | PIP-II Kicker Review

# **Remaining Design Issues – all straight forward**

- Design MEBT Kicker instrumentation interface
- Upgrade GaN FET gate driver stage
- Improve GaNFET PCB layout
  - In-line not in a loop
- Mount switch driver circuits against the feed-throughs
  No coax
- Design mechanical mounting
  - Drivers
  - Loads
- Address operating voltage limitation
  - Operating voltage now limited to 500 Vdc



# **Upgrade GaN FET Driver Stage**

GaNFET Gate Drive Stage



- Forced-air cooling needed to prevent turn-on and –off timing shifts
- Enables reducing PCB size & decrease Driver Circuit parasitics-to-everything

# **Operating Voltage Limitation**

- Problem is an average power dissipation issue
  - Operating voltage envelope sags during the 550  $\mu s$
- FET gate threshold voltage is temperature dependent
  - Junction temperatures are not matched
  - FET timing diverges at junction temperatures about 70 °C (absolute)
- Switches do not break; FETs recover





# **Cooling enhancement options for >530 V operation**

- 5% added to 528 V = 550 V providing desirable margin
- Option 1: build 4-FET switches instead of 3-FET
  - Total switch power dissipation remains roughly the same
  - Per-FET power dissipation would be less
- Option 2: mount GaN FETs on AIO<sub>2</sub> ceramic substrate
  Cost estimate is ~\$1800 for 10 substrates
- Option 3: improve cooling on existing G10 PCB
  - Increase air flow rate
  - Added small radiators on PCB bottom side

# Summary

- A 200 Ω kicker lowers power dissipation everywhere and made it possible to develop a switch-driver and achieve bunch-by-bunch chopping
  - Even for only Booster delivery with its 550  $\mu\text{s}$  macro bunches, 0.5 MHz average rep rates
  - Current helix design will simply be replicated for two kickers
- Both switch driver versions operated with beam at PIP2-IT demonstrated inherent multi-FET switch capabilities:
  - Switching speed to kick and pass bunch-by-bunch
  - Operation at and above 500 Vdc bias
  - To switch at Booster average 45 MHz switching rate
  - Operation at 81.25 MHz for 10's of microseconds at 20 Hz
- Photonic trigger system proved crucial
  - Allows delivery of the arbitrary waveform for Booster injection
  - Provides fine temporal adjustment of on/off delay as well as pulse width
- 4-month test proved GaN FET reliability despite junction thermal cycling
- There are a number of options to improve cooling and allow operation >530 Vdc bias



# **Acknowledgements**

- Management
  - Sasha Shemyakin, et al.
  - Dan Wolff, Chris Jensen
- Engineering contributions
  - Daniil Frolov
  - Alex Chen
  - Howie Pfeffer
  - Mohammed
  - Brian Chase
- Technical assistance
  - Jeff Simmons
  - Kevin Roon
  - Dave Franck
- Vendors
  - GaN Systems, Inc.
  - Gary James, elabinc@mtnhome.com
  - MPF Products, Inc.
  - JFW Industries, Inc.

# END



# Issues regarding high rep-rate multi-FET switch

- Switching losses at megahertz rates dominate FET dissipation
- Solution: transition faster (for example: well below 2 ns rise/fall)
  - Lowers FET dissipation
  - Increases difficulty of setting and maintaining synchronous timing match
- Reality of mismatched FETs
  - FETs originally timed close (+/- 100ps)
    - Tuned for ~2 ns turn-on time (5-95%)
    - They will be sharing to a significant degree even if we can measure differences in temp.
  - GaN FET rating is 650V
    - They won't break even if grossly mismatched (we've demonstrated this)
  - Mismatch problem is timing shift not thermal melt-down
    - Timing shifts occur at ~70°C junction
  - How many FETs in series to use?
    - 1 FET or 2 FETs not enough
    - 3 or 4 both work
- Real issue is to provide enough substrate cooling for average power



#### Switch turn-on/-off time difference without output compensation

#### Turn-on = 2.72 ns



