

## PIP2 MEBT Kicker Review

Greg Saewert
Chopper Review Meeting
2 August 2018

## Outline

- Requirements overview \& system design approach
- Challenges
- Design details
- Electrical performance results
- Issues to be addressed


## Kicker Requirements

- Kick individual bunches (bunch-by-bunch)
- Rise/fall time 4.0 ns ( $5-95 \%$ ) maximum between bunches
- This leaves 2.15 ns flattop to both kick and pass
- Kicking scheme
- +/- 500 V to kick beam out, 0 V to pass
- Kick an arbitrary pattern for Booster delivery (at 20 Hz ) - 45 MHz average switching rate during $550 \mu \mathrm{~s}$ macro-pulse - 0.5 MHz overall average switching rate
- Beam test modes
- 81.25 MHz switching rate for 10 's of $\mu \mathrm{s}$, at 20 Hz
- Any arbitrary pattern having switching rates $<81 \mathrm{MHz}$ and $<0.5 \mathrm{MHz}$ average


## Kicker System



## Overview - the Helix

- Dual 200 Ohm helical, traveling wave structure
- $200 \Omega$ (as opposed to typical 50) lowers drive current and power making fast switching conceivable
- $\ll 10$ Watts RF skin effect losses in the vacuum
- Symmetric and broadband structure
- Potentially low internal reflections
- Thermal design
- ~0.1 gpm water-cooled ground tube for 40 W beam loss
- Includes protection electrodes
- Challenges
- Match propagation to beam velocity
- Reflections
- Discontinuities between helix, $200 \Omega$ strip lines and load
- Frequency dependent effect (referred to as "dispersion")
- Cause: inter-winding coupling and winding capacitance to ground


## "Dispersion" Effect



## Addressing the Helix Design Challenges

- Propagation time is matched to beam beta by a tuning procedure
- Both prototype helices were tuned to $-0.5 \%$ of ideal
- Reflection issues
- Microstrip lines in and out are designed for 200 Ohms
- Feed-through to strip line to helix reflections are low
- Helix low impedance end-effects cause reflections
- Coupling between windings raises strip line impedance from $\sim 140$ to $200 \Omega \ldots$ but the turn at each end lacks the coupling
- Modeling used to find suitable compensation scheme
- Ground tube stepped 1-turn, both ends, raises impedance
- Reflection reduced about $30 \%$
- Load reflection can be compensated with small series inductance
- Switch-driver close to feed-through (and no coax) reduces reflections
- Dispersion effect reduction
- Helices are located away from ground surfaces by 1.75 "
- Helix dimensions were chosen to be slightly faster than beam beta
- Adding inter-winding capacitive plates provides compensation
- Compensation decreases dispersion and increases propagation time
- Integrated value of dispersion voltage peaking reduced to $<5 \%$


## Overview - Helix Drivers

- Kicker drivers are fast switches
- One single-switch driver per helix, opposite voltage polarity
- Apply $\pm 500 \mathrm{~V}$ to kick beam out, 0 V to pass
- Switches are series-connected FETs to share switching losses
- Total switch switching loss from Cds, 3 FETs in series:

$$
3 * \frac{1}{2} C d s\left(\frac{v}{3}\right)^{2} f=\frac{1}{3} * \frac{1}{2} C d s V^{2} f \quad(\text { Watts })
$$

- Switch construction
- Each switch fully isolated
- Each FET is individually gated simultaneously
- Driver design challenges
- Switch on and off fast enough
- Custom FET gate driver required for this switching speed
- Determine FETs reliability to handle thermal cycling
- Handling switching losses for Booster requirement
- $1 \mu \mathrm{~J}$ switching loss per cycle - capacitive switching loss
- 45 Watts are dissipated per FET at 45 MHz rep rate


## Addressing the Driver Design Challenges

- Photonics laser and transmitter provides precision triggering
- The generator signal gates laser
- Splitters deliver triggering to all FETs simultaneously to photo detectors on each GaNFET driver board
- Switching speed is obtained using GaN FETs (GaN Systems, Inc.)
- GS66502B: 7 Adc, 15 A pulsed; 650 V; 20 pF d-s, 65 pF g-s
- GaNFET driver circuit kept as small as conveniently possible minimizing parasitics
- Custom FET gate driver circuit designed with operating margin
- Turn-on time is settable to <2 ns
- 3-FET switches operate at 500 V above 90 MHz ; and 81.25 MHz at 600 V
- A Calibration procedure used to match FET timing
- Both turn-on and -off delay are matched to +/-100 ps
- Allowance remains for shifts due to time and temperature


## Addressing the Driver Design Challenges (cont.)

- FET reliability test: 3-FET switch was operated for 4 months 24/7
- 500 V bias, 45 MHz for $550 \mu \mathrm{~s}$ at 20 Hz (Booster ave. switching rates)
- No evident timing variations
- Demonstrates GaN FETs are not overly stressed
- Turn-off time reduced to <4 ns with compensation:

- 500 V on the plate assumes $100 \%$ efficient kicker
- Helices are 95-97\% efficient
- 3 V drop in the switch
- Required bias voltage is $\sim 528 \mathrm{Vdc}$
- Our present limit is 500 Vdc bias voltage


## Helical kickers



## Dual-Helix Assembly



北Fermilab

## LLRF's Arbitrary Waveform Generator

- 1's/0's in a file define kick/pass switching pattern are downloaded to the Generator
- Phasing as well as turn on/off edge adjustments can be set with $\sim 40$ ps resolution
- The arbitrary $550 \mu \mathrm{~s}$ Booster pattern was used at PIP2-IT:


## The File



The Arbitrary Kicking Pattern


带Fermilab

## Electric to Fiber Transmitter \& Switch



## Photonic Transmitter Chassis

Photonic transmitter:


## GaNFET Driver Circuit

Detector Stage

- Photo detector
- 1 GHz opamps: gain (x2)
- 280 MHz comparator

Turn-on \&
Turn-off delay adjustment


带 Fermilab

## GaNFET Driver Circuit: AC/DC Power



- $3.5 \mathrm{~V}, 500 \mathrm{kHz}$ AC in
- 3 Well-regulated DC voltages out


## The Switch-Driver Chassis (Photonic Gate Version)



## Driver as installed now in the MEBT



## Driver as installed now in the MEBT



8/2/2018 G. Saewert | PIP-II Kicker Review

## First 200 Ohm Chopper Installed at PIP2-IT <br> (Transformer Gate Version)

Assembly shown similar to intended final version

- Switch Driver assembly bolted to the helix plate

Drivers


## Switch performance

Switching at $81 \mathrm{MHz}, 10$ us bursts: 600 Vp-p, 4 ns / div


Switching at 45 MHz average rate for 600 us:
600 Vp-p, 100 us / div


或Fermilab

## $\pm 500 \mathrm{~V}$ Bias at $81.25 \mathrm{MHz}, 20 \mathrm{~Hz}$ Repetition Rate

## Photonics triggered driver version as operated at PIP2-IT

Individual Helix Waveforms


Differential voltage


## $\pm 500 \mathrm{~V}$ Bias, Arbitrary Pattern



## Switching 1100 V, 45 MHz for $600 \mu \mathrm{~s}$ at 20 Hz



Upper Helix
Lower Helix
Difference Voltage

Simulated beam
bunches
Vertical
$\approx 220 \mathrm{~V} / \mathrm{div}$

Horizontal: $100 \mu \mathrm{~s} / \mathrm{div}$

## Switching at $81.25 \mathrm{MHz}, \pm 600 \mathrm{~V}$; kick every other bunch



23 Nov 2010
$11: 01: 32$

Through-voltages

Upper Helix
Lower Helix
Difference Voltage

Simulated beam bunches

Vertical
$\approx 220 \mathrm{~V} / \mathrm{div}$
Horizontal:
$10 \mathrm{~ns} / \mathrm{div}$

Amplitudes are consistent up to $40 \mu \mathrm{~s}$ bursts at 81.25 MHz

## Switching at $40.625 \mathrm{MHz}, \pm 600 \mathrm{~V}$; kick 2 pass 2



Through-voltages
Upper Helix
Lower Helix

## Difference

Voltage

Vertical
$\approx 220 \mathrm{~V} / \mathrm{div}$
Horizontal:
20 ns /div

## Remaining Design Issues - all straight forward

- Design MEBT Kicker instrumentation interface
- Upgrade GaN FET gate driver stage
- Improve GaNFET PCB layout
- In-line not in a loop
- Mount switch driver circuits against the feed-throughs
- No coax
- Design mechanical mounting
- Drivers
- Loads
- Address operating voltage limitation
- Operating voltage now limited to 500 Vdc


## Upgrade GaN FET Driver Stage

## GaNFET Gate Drive Stage



60 MHz CW rep rate

- Eliminates inductor performance compromise
- Circuit power reduced from 1.25W to 0.1W
- Forced-air cooling needed to prevent turn-on and -off timing shifts
- Enables reducing PCB size \& decrease Driver Circuit parasitics-to-everything


## Operating Voltage Limitation

- Problem is an average power dissipation issue
- Operating voltage envelope sags during the $550 \mu \mathrm{~s}$
- FET gate threshold voltage is temperature dependent
- Junction temperatures are not matched
- FET timing diverges at junction temperatures about $70{ }^{\circ} \mathrm{C}$ (absolute)
- Switches do not break; FETs recover


北Fermilab

## Cooling enhancement options for $>530 \mathrm{~V}$ operation

- $5 \%$ added to $528 \mathrm{~V}=550 \mathrm{~V}$ providing desirable margin
- Option 1: build 4-FET switches instead of 3-FET
- Total switch power dissipation remains roughly the same
- Per-FET power dissipation would be less
- Option 2: mount GaN FETs on $\mathrm{AlO}_{2}$ ceramic substrate
- Cost estimate is $\sim \$ 1800$ for 10 substrates
- Option 3: improve cooling on existing G10 PCB
- Increase air flow rate
- Added small radiators on PCB bottom side


## Summary

- A $200 \Omega$ kicker lowers power dissipation everywhere and made it possible to develop a switch-driver and achieve bunch-by-bunch chopping
- Even for only Booster delivery with its $550 \mu \mathrm{~s}$ macro bunches, 0.5 MHz average rep rates
- Current helix design will simply be replicated for two kickers
- Both switch driver versions operated with beam at PIP2-IT demonstrated inherent multi-FET switch capabilities:
- Switching speed to kick and pass bunch-by-bunch
- Operation at and above 500 Vdc bias
- To switch at Booster average 45 MHz switching rate
- Operation at 81.25 MHz for 10's of microseconds at 20 Hz
- Photonic trigger system proved crucial
- Allows delivery of the arbitrary waveform for Booster injection
- Provides fine temporal adjustment of on/off delay as well as pulse width
- 4-month test proved GaN FET reliability despite junction thermal cycling
- There are a number of options to improve cooling and allow operation >530 Vdc bias


## Acknowledgements

- Management
- Sasha Shemyakin, et al.
- Dan Wolff, Chris Jensen
- Engineering contributions
- Daniil Frolov
- Alex Chen
- Howie Pfeffer
- Mohammed
- Brian Chase
- Technical assistance
- Jeff Simmons
- Kevin Roon
- Dave Franck
- Vendors
- GaN Systems, Inc.
- Gary James, elabinc@mtnhome.com
- MPF Products, Inc.
- JFW Industries, Inc.


## END

## Issues regarding high rep-rate multi-FET switch

- Switching losses at megahertz rates dominate FET dissipation
- Solution: transition faster (for example: well below 2 ns rise/fall)
- Lowers FET dissipation
- Increases difficulty of setting and maintaining synchronous timing match
- Reality of mismatched FETs
- FETs originally timed close (+/- 100ps)
- Tuned for $\sim 2$ ns turn-on time ( $5-95 \%$ )
- They will be sharing to a significant degree even if we can measure differences in temp.
- GaN FET rating is 650V
- They won't break even if grossly mismatched (we've demonstrated this)
- Mismatch problem is timing shift not thermal melt-down
- Timing shifts occur at $\sim 70^{\circ} \mathrm{C}$ junction
- How many FETs in series to use?
- 1 FET or 2 FETs not enough
- 3 or 4 both work
- Real issue is to provide enough substrate cooling for average power


## Switch turn-on/-off time difference without output compensation




茶Fermilab

