TPC electronics calibration with pulser in cold box data

BNL DUNE

David Adams BNL June 20, 2018

Introduction

I look at APA data from CERN

- Data available at CERN and FNAL
 - <u>https://wiki.dunescience.org/wiki/Accessing_ProtoDUNE-SP_Cold_Box_Test_Data_in_LArSoft</u>
- Single APA in a cold box
 - Expect to find 2560 channels: 20 FEMB × 128 chan/FEMB
 - o For APA5 testing, 12/20 FEMBs have data → 1536 channels
- Some data taken with pulser
 - DAC = 1, 2, ..., 10 (See following page)
- Use this data to calibrate the TPC electronics
 - I.e. convert ADC count to input charge

Pulser

Pulser

- DAC used induce voltage shift V_{in} at input to preamp
 - \circ (As does a moving charge in the vicinity of an anode wire)
 - $_{\odot}$ $\,$ Voltage shifted up and then back down periodically
 - Rising and falling edges inject charge
- With known input capacitance C, the charge injection is Q_{in} = C V_{in}
 - DAC setting of P = 0, 1, 2,..., 63 should give $V_{in} = P V_{step}$

$$\rightarrow$$
 Q_{in} = P Q_{step} where

Q_{step} = C V_{step} = (183 fF) (18.75 mV) = 3.43 fC = 21.4 ke

- Two options for the pulser
 - Internal: DAC is on the preamp ASIC
 - External: DAC on the FEMB
- APA5 data taken with internal pulser
 - Behavior does not follow the above ideal
 - There is a channel-dependent offset: $V_{in} = V_{off} + P V_{step}$ for P > 1
 - P = 1 has additional channel dependence
 - Ignore P = 1 and, for P > 1, assume $Q_{in} = Q_{off} + P Q_{step}$

P = 1 is about 1 MIP

Analysis procedure

For each channel and pulser setting

- Evaluate and subtract pedestal
- Find ROIs
 - ROI = region of interest, range of ticks where signal appear
 - One ROI should be one pulse, i.e. a step up or down in the input voltage
 - Simple threshold algorithm is sufficient to find these pulses which are well above the noise level
- Process ROIs
 - Separate analysis for positive and negative signals
 - Fit each ROI with coldelec function
 - Vary height, shaping time and position in fit
 - Create summary histograms with the mean values of
 - height
 - shaping time
 - chi-square
 - chi-square/DOF
- Sample fcl in appendix (uses Tool-based data prep)

Evaluate gain for each channel

• Using observed height distributions for multiple pulser settings

Example ROI fits (run 1193, pulser=3)

Example summary height and shaping (1/1200)

Example summary chi-square (1/1200)

ROI normalized fit χ^2 /DOF run 1193 channel 500

Pulse fit quality

Following slides show fit quality for 200 channels

- Mean value from distributions like those on previous page
- For the 7 different DAC settings
- Two plots
 - Raw chi-square (from fit without errors)
 - Normalized chi-square dividing by DOF and using the pedestal RMS as the uncertainty for each ADC bin
- Results very good for positive pulses
 - Corrected mean chi-square/DOF is close to one except at the highest DAC setting where saturation (clipping) is evident by eye
- Negative pulse quality degrades as DAC setting is increased
 - \circ Not clear why this is

Normalized fit χ^2/DOF

Gain evaluation

Use pulser data to measure gains

- I.e. ADC count out for a given input charge
 - Input charge follows from the height of the pulser voltage step
- Using preceding model for input charge, expect (ADC pedestal)

A = g Qin

= g (Q_{off} + P Q_{step})

= S (P + P_{off}) Q_{step} g

where S = +1 for the rising edges and -1 for the falling edges

- Fit for g (and Poff) using measured A for P = 2, 3, ...
 - Stop when pulse saturates (amplifier or ADC)
 - Larger values of P may identify limits of ADC range
- A is the mean of the height for DAC setting P
 - RMS of this is used as error in A for the fit

Gain fits

DAC on a

100

DUNE DRA

DAC too a

Height vs. DAC channel 529

tran jaran jaran jaran jaran jaran jaran jaran j

Height vs. DAC channel 524 Gaih: 275.3 (ADC count)/O ginp

DAC on a

-1000

2000

DUNE DRA

or a local de la caracita de la cara

DAC on a

Height vs. DAC channel 549

20

DAC on a

H^T

the sector of th

DAC on a

2000

Height vs. DAC channel 605

DUNE DRA

DAC on a

D. Adams, BNL

25

Calibration with pulser signals in cold box data

en de contener de contener de la con

DAC on a

Height vs. DAC channel 665

150

DUNE DRA

Height vs. DAC channel 685

Height vs. DAC channel 689

outso.

DAC court

Gain and offset fits results vs. channel

Fit quality vs. channel

Fit distributions (channels 500-699)

Summary/conclusions

Pulser data used to obtain TPC electronics calibration

- The gain, (input charge)/(ADC count), for each channel
 - So far for 200 induction channels
 - $_{\odot}$ $\,$ Data taken with preamp gain of 25 mV/fC and 2 μs shaping
 - Result is an average gain of 78 e/(ADC count) with σ = 3.2%
- Pedestal was evaluated first (see earlier talks)
- Gain is an average over a broad range of the ADC
 - More work needed to correct for non-linearity or get response in the single MIP region
 - Pulses alone give only coarse calibration
 - But may be able to use points on the pulse waveform to go finer
- Above is a pulse height calibration
 - Valid for isolated signal with charge collection time << 2 μs
 - I think we want a pulse area calibration—right?
 - Straightforward to obtain this from pulser data
 - A bit more channel-to-channel variation because shaping time varies

Future

Study few % of channels with poor fits Look at remaining channels in APA 5

- The other 1336 channels
- Including collection with different pedestal location

Area calibration?

Calibrate

- Put gains in calibration tool and validate
- Search each channel for sticky ADC codes
 - Determine extent of the problem
 - $_{\odot}$ $\,$ Use pulser data to determine implication with and without mitigation
 - Most of the data is is in the pedestal region and we can do a thorough characterization there
 - Use samples along the pulse waveform to examine other regions
 - Vary pulser DAC and offset to illuminate most of the ADC range
 - Good fit quality suggests this will work well for the positive pulses
 - Like to understand why fit quality degrades for negative pulses at high DAC settings

Extras

Data prep service configuration

```
RawDigitPrepService: {
    service provider: ToolBasedRawDigitPrepService
    LogLevel: 3
    DoWires: false
    AdcChannelToolNames:
       "digitReader", Extract raw data and pedestal from raw::RawDigit
                                                   Find pedestals
       "adcPedestalFit",
       "pdapa adcChannelPedestalRmsPlotter",
                                                    Display RMS
       "adcSampleFiller",
                             Subtract pedestal, trivial calibration
       "adcThresholdSignalFinder",
                                                      Find ROIs
       "adcRoiFitterPos",
                                                    Process ROIs
       "adcRoiFitterNeg"
```

Configuration of ROI processing tool (obsolete)

<pre>tools.adcRoiFitterPos: @local::tools.adcRoiFitter tools.adcRoiFitterPos.LogLevel: 2 tools.adcRoiFitterPos.SigThresh: 100.0 tools.adcRoiFitterPos.RoiHistOpt: 1 tools.adcRoiFitterPos.FitOpt: 1 tools.adcRoiFitterPos.RoiRootFileName: "roiroipos.root" tools.adcRoiFitterPos.SumRootFileName: "roisumpos.root" tools.adcRoiFitterPos.ChanSumRootFileName: "roichanpos.r tools.adcRoiFitterPos.ChanSumRootFileName: "roichanpos.r</pre>	Fit with coldelec functio Output root files	on Summary histo	ograms
<pre>tools.adcRofFitterPos.SumHists: [{var:fitHeight name:"hfh_ch%0CHAN%" title:"ROI {var:fitHeight name:"hfhw_ch%0CHAN%" title:"ROI {var:fitWidth name:"hfw_ch%0CHAN%" title:"ROI {var:fitWidth name:"hfpw_ch%0CHAN%" title:"ROI {var:fitPosition name:"hfp_ch%0CHAN%" title:"ROI {var:fitTickRem name:"hfp_ch%0CHAN%" title:"ROI {var:fitPeriodRem name:"hftw_ch%0CHAN%" title:"ROI {var:fitChiSquare name:"hfcsmdw_ch%0CHAN%" title:"ROI {var:fitCNormDof name:"hfcsndw_ch%0CHAN%" title:"ROI</pre>	<pre>fit height channel %CHAN%" fit height channel %CHAN%" fit width channel %CHAN%" fit width channel %CHAN%" fit position channel %CHAN%" fit position remainder channel %CHAN% fit period remainder channel %CHAN%" fit #chi^{2} channel %CHAN%" normalized fit #chi^{2}/DOF channel %</pre>	nbin:100 xmin:100 nbin:100 xmin:0 nbin:100 xmin:4.0 nbin:100 xmin:0.0 nbin:100 xmin:0.0 %" nbin:100 xmin:-0.5 nbin:500 xmin:-250 nbin:100 xmin:0.0 %CHAN%" nbin:100 xmin:0.0	<pre>xmax:5 fit:gaus}, xmax:0 fit:gaus}, xmax:4.5 fit:gaus}, xmax:10000 }, xmax:0.5 fit:gaus}, xmax:250 }, xmax:0.0 }, xmax:0.0 },</pre>
] tools.adcRoiFitterPos.ChannelRanges: [{name:apa1u begin:0 end:800 label:"APA1u"}]			
<pre>tools.adcRoiFitterPos.ChanSumHists: [{name:"hcsHeight_%CRNAME%" title:"ROI fit height ru</pre>	un %RUN% %CRLABEL%"	valHist:"hfh_ch%0CHAN%"	valType:fitMean
<pre>cr:apalu}, {name:"hcsShaping_%CRNAME%" title:"ROI fit shaping t cr:apalu}, {name:"hcsChiSquare %CRNAME%" title:"ROI fit #cbi^(2)</pre>	time run %RUN% %CRLABEL%"	valHist:"hfw_ch%0CHAN%"	valType:fitMean
<pre>cr:apa1u}, {name:"hcsCSNormDof_%CRNAME%" title:"ROI fit Normalize cr:apa1u}</pre>	ed #chi^{2}/DOF run %RUN% %CRLABEL%" v	valHist:"hfcsndw_ch%0CHAN%"	valType:mean
]	K		

Channel summary histograms