DUNE and the Fermilab Program

Flavor / Interactions States

$$
W^{+} \rightarrow e^{+} \nu_{e} \quad W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{+} \rightarrow \tau^{+} \nu_{\tau}
$$

Flavor / Interactions States
$W^{+} \rightarrow e^{+} \nu_{e}$
$W^{+} \rightarrow \mu^{+} \nu_{\mu}$
$W^{+} \rightarrow \tau^{+} \nu_{\tau}$

Mass / Propagation States

Interactions

Propagation

Interactions

Propagation

$$
\nu_{s} ?
$$

NSI?

Interactions

Propagation

NSI ?

CPV?
unitarity?

Interactions

Propagation

CPV?
masses ?
decays ?

Neutrino Mass EigenStates or Propagation States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 L_{\nu}}\right)}$

ν_{2}

$$
\nu_{\mu}=
$$

SuperK, K2K,T2K MINOS, NOvA ICECUBE
ν_{3}
least ν_{e}

$$
\nu_{\tau}=
$$

Neutrino Mass EigenStates or Propagation States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 L_{\nu}}\right)}$

Within Three Neutrino Paradigm:

- Majorana or Dirac (2 or 4 states)
- Mass Ordering
- Dominant Flavor of ν_{3}
- CP violation parameter δ
- Mass of lightest ν_{j}

荧 $\nu_{3}, \nu_{1} / \nu_{2}$ Mass Ordering

 -atmospheric mass ordering
mass

$?$

$$
\nu_{e}=\circlearrowleft \quad \nu_{\mu}=\circlearrowleft \quad \nu_{\tau}=\circlearrowleft
$$

華 $\nu_{3}, \nu_{1} / \nu_{2}$ Mass Ordering: -atmospheric mass ordering mass

Octant of θ_{23} $\sin ^{2} \theta_{23} \quad 0.40 \quad 0.50 \quad 0.60$ ν_{3} \square

華 $\nu_{3}, \nu_{1} / \nu_{2}$ Mass Ordering: -atmospheric mass ordering mass

Octant of θ_{23}

$\sin ^{2} \theta_{23}$	0.40	0.50	0.60
ν_{3}	\square		

$\pm \pi / 2$

華 $\nu_{3}, \nu_{1} / \nu_{2}$ Mass Ordering:
-atmospheric mass ordering mass

Octant of θ_{23}
$\sin ^{2} \theta_{23}$
0.40 0.50
0.60
ν_{3}

ν_{2}
ν_{1}

ν_{2}
ν_{1}

CP violation

$\pm \pi / 2$
$\boldsymbol{\delta}$

華 $\nu_{3}, \nu_{1} / \nu_{2}$ Mass Ordering:
-atmospheric mass ordering mass
$\nu_{\tau}=$ \square

Octant of θ_{23}
$\sin ^{2} \theta_{23}$
0.40 0.50
0.60
ν_{3}

ν_{2}
ν_{1}

ν_{2}
 ν_{1}

ν_{2}

ν_{1}

華 $\nu_{3}, \nu_{1} / \nu_{2}$ Mass Ordering: -atmospheric mass ordering mass

Octant of θ_{23}
$\sin ^{2} \theta_{23}$ 0.40 0.50
0.60
ν_{3}

$$
\begin{aligned}
& \nu_{2} \\
& \nu_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \nu_{2} \\
& \nu_{1}
\end{aligned}
$$

ν_{1}

WHY?

Precision
 Neutrino
 Measurements:

WHY?

Precision
 Neutrino
 Measurements:

To discover neutrino BSM, one needs precision predictions for nuSM

Determine flavor fractions of neutrino mass states

Determine flavor

Precision Predictions for flavor ratios at ICECUBE.

Determine flavor fractions of neutrino mass states

Precision Predictions for flavor ratios at ICECUBE.

Stress Test
Neutrino paradigm search for new physics

Determine flavor fractions of neutrino mass states

Quarks:

Precision Predictions for flavor ratios at ICECUBE.

M. Ross-Lonergan + SP arXiv:1508.05095

Connection to Leptogenesis
Understanding Universe

- θ_{13} - $\Delta \mathrm{m}_{21}^{2}$ - Δm_{31}^{2}

Test Theoretical Neutrino Models

Connection to Leptogenesis Understanding Universe

Predictions of flavor symmetry forms

Test Theoretical Neutrino Models

- Atmospheric Neutrinos (SK)
- LBL Disappearance (T2K \& NOvA)
- LBL Appearance (T2K \& NOvA)
- Sterile Neutrinos (MiniBooNE \& 3+1 models)

Atmospheric Neutrino Results from Super-Kamiokande

Yoshinari Hayato (Kamioka, ICRR)
for the Super-Kamiokande collaboration

Neutrino oscillation studies using atmospheric v
High statistics atmospheric neutrino data
\sim Possibility in observing small distortion in $v_{\mathrm{e}} \quad$ Normal hierarchy
Difference in \# of electron events:

$$
\begin{array}{rlrl}
\Delta_{e} \equiv \frac{N_{e}}{N_{e}^{0}} \cong \Delta_{1}\left(\theta_{13}\right) & & \text { Matter effect } \\
& +\Delta_{2}\left(\Delta m_{12}^{2}\right) & & \text { Solar term } \\
& +\Delta_{3}\left(\theta_{13}, \Delta m_{12}^{2}, \underline{=}\right) & & \text { Interference }
\end{array}
$$

- Matter effect ~ from mass hierarchy

Possible enhancement in several GeV passed through the earth core One of the flavors (v_{e} or $\overline{v_{e}}$) shows this enhancement.

- Solar term ~ from θ_{23} octant degeneracy Possible v_{e} enhancement in sub-GeV
- Interference

CP phase could be studied.

Determination of v oscillation parameters

SK-I to SK-IV, 5326 days (2519 days from SK-IV), $328 \mathrm{kt} \cdot \mathrm{yr}$

$$
\begin{gathered}
\Delta m_{21}^{2}=(7.53 \pm 0.18) \times 10^{-5} \mathrm{ev}^{2} \\
\sin ^{2} \theta_{12}=0.304 \pm 0.014 \\
\sin ^{2} \theta_{13}=0.0219 \pm 0.012
\end{gathered}
$$

$$
\begin{aligned}
\left|\Delta m_{32}^{2}\right|= & 2.50_{-0.20}^{+0.13} \times 10^{-3} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{23}= & 0.588 \pm_{0.064}^{0.031} \\
& \left(\chi_{N H, \text { min }}^{2}-\chi_{I H, \text { min }}^{2}=-4.34\right)
\end{aligned}
$$

LBL

$$
\nu_{\mu} \rightarrow \nu_{\mu} \text { and } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}
$$

What can we learn from $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$?

- first approx: measure only $4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)$ and $\Delta m_{\mu \mu}^{2}$
- Need $\sin ^{2} \theta_{13}$ to extract $\sin ^{2} \theta_{23}$
$-\sin ^{2} \theta_{12}, \Delta m_{21}^{2}$, mass ordering $(\cos \delta)$ to extract Δm_{32}^{2}

What can we learn from $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$?

- first approx: measure only $4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)$ and $\Delta m_{\mu \mu}^{2}$
- Need $\sin ^{2} \theta_{13}$ to extract $\sin ^{2} \theta_{23}$
$-\sin ^{2} \theta_{12}, \Delta m_{21}^{2}$, mass ordering $(\cos \delta)$ to extract Δm_{32}^{2}
- Approx Symmetries:
$-\left|U_{\mu 3}\right|^{2} \Leftrightarrow 1-\left|U_{\mu 3}\right|^{2}$ equiv. $\sin ^{2} \theta_{23} \Leftrightarrow 1 / \cos ^{2} \theta_{13}-\sin ^{2} \theta_{23}$
$-\nu \Leftrightarrow \bar{\nu}$; insensitive to matter effects
- Normal Ordering \Leftrightarrow Inverted Ordering
- insensitive to $\cos \delta$

H2
 $P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right), P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}\right)$

$\boldsymbol{E} \mathrm{GeV}(\mathrm{L}=295 \mathrm{~km})$

$$
\left|\boldsymbol{U}_{\boldsymbol{\mu} 3}\right|^{2}=0.45 \text { and } 0.55 \text { then } 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.99
$$

H2
 $P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right), P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}\right)$

$$
\text { 黄 } \boldsymbol{Z} \widehat{K} \quad P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right), P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}\right)
$$

- Small preference for Upper octant from disappearance alone

$$
\left|\boldsymbol{U}_{\boldsymbol{\mu} 3}\right|^{2}=0.45 \text { and } 0.55 \text { then } 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.99
$$

$$
\left|\boldsymbol{U}_{\boldsymbol{\mu} 3}\right|^{2}=0.45 \text { and } 0.55 \text { then } 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.99
$$

- Even better Symmetry:

Upper Octant/Normal Order "degenerate" Lower Octant/Inverted Order for ν and $\bar{\nu}$ plus vice versa

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right), P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}\right)
$$

NO

10

NOvA:

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right), P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}\right)
$$

NO

*

double flip

LBL
 $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

Correlations btw

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

arXiv:hep-ph/020417

Correlations btw

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

T2K/HK

NOvA

DUNE
Same L/E as NO $\nu \mathrm{A}$

Correlations btw

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

DUNE
Same L/E as NO ν A

NO

に $\propto \rho L \sin ^{2} \theta_{23}$

arXiv:hep-ph/020417

Correlations btw
$\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

DUNE
Same L/E as NO ν A

arXiv:hep-ph/020417

T2K \& NOvA: circa 2016

1 sigma:

IO

Appearance data
\bar{v}_{e} appearance

- Compare consistency with PMNS \bar{v}_{e} appearance ($\beta=1$) and no \bar{v}_{e} appearance ($\beta=0$) - if $\beta=0$ expect 6.5 events
- if $\beta=1$ expect 11.8 events

- The data shapes look more consistent with background spectra than \bar{v}_{e} signal spectrum
- Use rate+shape analyses:

β	HYPOTHESIS	P-VALUE
$\beta=0$	NO appearance	$p=0.233$
$\beta=1$	PMNS appearance	$p=0.0867$

- No strong statistical conclusion yet

Neutrino 2018

	$\sin ^{2} \theta_{23} \leq 0.5$	$\sin ^{2} \theta_{23}>0.5$	SUM
$\mathrm{NH}\left(\Delta \mathrm{m}^{2}{ }_{32}>0\right)$	0.204	0.684	0.888
$\mathrm{IH}\left(\Delta \mathrm{m}^{2}{ }_{31}<0\right)$	0.023	0.089	0.112
SUM	0.227	0.773	1

Neutrino 2018

Neutrino 2018
CPC

	$\sin ^{2} \theta_{23} \leq 0.5$	$\sin ^{2} \theta_{23}>0.5$	SUM
$\mathrm{NH}\left(\Delta \mathrm{m}^{2}{ }_{32}>0\right)$	0.204	0.684	0.888
$\mathrm{IH}\left(\Delta \mathrm{m}^{2}{ }_{31}<0\right)$	0.023	0.089	0.112
SUM	0.227	0.773	1

Neutrino 2018

CPC

	$\sin ^{2} \theta_{23} \leq 0.5$	$\sin ^{2} \theta_{23}>0.5$	SUM
$\mathrm{NH}\left(\Delta \mathrm{m}^{2}{ }_{32}>0\right)$	0.204	0.684	0.888
$\mathrm{IH}\left(\Delta \mathrm{m}^{2}{ }_{31}<0\right)$	0.023	0.089	0.112
SUM	0.227	0.773	1

Neutrino 2018

Neutrino 2018

rescaled axes by 4

- We observe >4 σ evidence of electron antineutrino appearance.

- We observe >4 σ evidence of electron antineutrino appearance.

I2 K

DUNE bi-Probability Diagrams:

Normal Ordering - Inverted Ordering

VOM

Beyond 3 neutrino Paradigm:

- Sterile Neutrinos (MiniBooNE \& 3+1 models)

MicroBooNE:

MicroBooNE:

Total excess for neutrino + antineutrino:

Updated global analysis of neutrino oscillations in the presence of eV -scale sterile neutrinos

Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz

Are there light sterile neutrinos?

Updated global analysis of neutrino oscillations in the presence of eV -scale sterile neutrinos

Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz
Invisibles visitor
Invisibles visitor
Former RA
future FNAL RA

What is the Nature of The Excess ???

Updated global analysis of neutrino oscillations in the presence of eV -scale sterile neutrinos
Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz
Invisibles visitor Invisibles visitor Former RA future FNAL RA

What is the Nature of The Excess ???

Spotlighted MicroBooNE, ICARUS \& SBND Nu 2020 ChicagoLand

Summary / Score Card:

Summary / Score Card:

- Mass Ordering:

SK ($\sim 2^{+} \sigma$) and T2K ($\sim 2^{-} \sigma$) preference for Norm. Ord. NOvA $\left(\sim 2^{-} \sigma\right)$ preference for Norm. Ord.

Summary / Score Card:

- Mass Ordering: - Norm. Ord. ~3 σ SK $\left(\sim 2^{+} \sigma\right)$ and T2K $\left(\sim 2^{-} \sigma\right)$ preference for Norm. Ord. NOvA $\left(\sim 2^{-} \sigma\right)$ preference for Norm. Ord.

Summary / Score Card:

- Mass Ordering: - Norm. Ord. ~3 σ SK ($\sim 2^{+} \sigma$) and T2K ($\sim 2^{-} \sigma$) preference for Norm. Ord. NOvA $\left(\sim 2^{-} \sigma\right)$ preference for Norm. Ord.
- Dominant Flavor of ν_{3} :

SK $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. (ν_{μ} dominates) T2K $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. NOvA $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct.

Summary / Score Card:

- Mass Ordering: - Norm. Ord. ~3 σ SK ($\sim 2^{+} \sigma$) and T2K ($\sim 2^{-} \sigma$) preference for Norm. Ord. NOvA $\left(\sim 2^{-} \sigma\right)$ preference for Norm. Ord.
- Dominant Flavor of ν_{3} : — Upper Octant $\sim 2 \sigma$ SK $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. (ν_{μ} dominates) T2K $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. NOvA $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct.

Summary / Score Card:

- Mass Ordering: - Norm. Ord. ~3 σ SK ($\sim 2^{+} \sigma$) and T2K ($\sim 2^{-} \sigma$) preference for Norm. Ord. NOvA ($\sim 2^{-} \sigma$) preference for Norm. Ord.
- Dominant Flavor of ν_{3} : — Upper Octant $\sim 2 \sigma$ SK $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. (ν_{μ} dominates) T2K $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. NOvA $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct.
- CP violation parameter δ :

SK and T2K best fit close to $\delta \approx-\pi / 2$
NOvA best fit:
$\delta \approx \pi / 5$ for NormOrd and $\delta \approx-\pi / 2$ for Inv. Ord.

Summary / Score Card:

- Mass Ordering: - Norm. Ord. ~3 σ SK ($\left.\sim 2^{+} \sigma\right)$ and T2K $\left(\sim 2^{-} \sigma\right)$ preference for Norm. Ord. NOvA ($\sim 2^{-} \sigma$) preference for Norm. Ord.
- Dominant Flavor of ν_{3} : — Upper Octant $\sim 2 \sigma$ SK $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. (ν_{μ} dominates) T2K $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. NOvA $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct.
- CP violation parameter δ : — ??? DUNE, T2HK/K SK and T2K best fit close to $\delta \approx-\pi / 2$ NOvA best fit:
$\delta \approx \pi / 5$ for NormOrd and $\delta \approx-\pi / 2$ for Inv. Ord.
- Mass Ordering: - Norm. Ord. ~3 σ SK ($\sim 2^{+} \sigma$) and T2K ($\sim 2^{-} \sigma$) preference for Norm. Ord. NOvA $\left(\sim 2^{-} \sigma\right)$ preference for Norm. Ord.
- Dominant Flavor of ν_{3} : — Upper Octant $\sim 2 \sigma$ SK $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. (ν_{μ} dominates) T2K $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct. NOvA $\left(\sim 1^{+} \sigma\right)$ preference for Up. Oct.
- CP violation parameter δ : — ??? DUNE, T2HK/K SK and T2K best fit close to $\delta \approx-\pi / 2$ NOvA best fit:
$\delta \approx \pi / 5$ for NormOrd and $\delta \approx-\pi / 2$ for Inv. Ord.
- Steriles:

MiniBooNE excess (4.8 σ)
"Spotlights" the current and future Fermilab SBN
(MicroBooNE, ICARUS, SBN)

"And yet the nothing-particle is not a nothing at all." - Isaac Asimov I966

