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Outline of Talk

 Moving from phase preserving measurement to photon counting
* Designing a single photon counter

 Experimental protocol to determine cavity photon occupation

 Overcoming background sources and dark rates in new detection scheme




Photon Rates of Signal and Backgrounds

DFSZ, 0.3 GeV/ce, 14T, C=1/2, Q=5x10*@1GHz, 143, crit.coup.
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How to Bridge the Gap between Signal and Backgrounad

>

* Signal Rate decreases with cavity
volume. <<1 photon per cavity
measurement

(

Phase space area is still
¥%2h but is squeezed in
radial (amplitude)
direction. Phase of
wave is randomized.

Quantum limited noise from linear
amplifier =1 photon/measurement

Aaron S. Chou,




Advantages and Challenges of Counting

>

* Circumvent guantum limited phase
preserving amplifier

* [alse positives dominate backgrounad
e cavity thermal occupation
* detector dark rate

Phase space area is still
%2h but is squeezed in
radial (amplitude)
direction. Phase of
wave is randomized.

Aaron S. Chou







Maximize overlap between
cavity mode E and external B




Superconducting Qubit Functions as Two-Level System

H = wea'a +Hwgos + 2xa'ao,
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Customize transition frequency



Designing Qubit-Cavity Interaction




Designing Qubit-Cavity Interaction
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Designing Qubit-Cavity Interaction
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Designing Qubit-Cavity Interaction
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Qubit Spectroscopy

Axion Induced current
opumps cavity with photon ’
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Cavity Occupation Imprinted on Qubit
H =w.a'a+ (wg +2xa’a)o,
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Qubit Interrogation

Qubit Spectroscor
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False Positives from Backgrounds and Detector Dark Rate

Cavity Photon Population Qubit Excited State Population
1,66 X 1075 < Ty < 4.47 x 1074 P, =0.014
Leav = 55.13%:(5)%7”[( Tqubz’t = 82mK
Residual photons In the cavity are Spurious population in the qubit excited

indistinguishable from signal photons | state mimics a successful qubit flip
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from higher -
temperature stages 386;‘»1 ©
: : . -12 GHz
with line attenuation solators (L)
* Are circulators and 8;126Hzé)>\/
isolators cold? chedator
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e attenuators? MU Meta
(Small Can)

Custom atten courtesy of B.
Palmer: Journal of Applied
Physics 121, 224501 (2017)
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Active Cooling of Qubit Population

Active sideband
cooling with higher

qubit levels
f0) — |g1)
Wb = Wy

0
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7Tef waT Sideband frequency (GHz)




Reduce effective dark rate by combining qubit measurements

e Sample the same qubit N
times

* requires N times as much
time to complete
experiment

 photon decays quickly
(1us)

- Sample N different qubits
with error rate alpha

PNerrors — (a)N = 25 o
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Qubit Cavity Design
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Conclusions

the Dav1d

Lucile Dy | 4 rd

FOUNDATION

 Employ quantum computing technigues/devices for
dark matter cosmology experiment

e Shift penalties of standard quantum limit by
dispersively counting photons A - ONS

* Bulld superconducting detectors with customizable
interactions with an EM environment

o Use Qubit-Cavity interactions to store & process
guantum information
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Optical Direct Writer
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Dispersive Coupling of the Cavity and Qubit
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Interaction set by:
dipole arm geometry
gubit location In cavity
qubit-cavity frequency
detuning

gublit anharmonicity




Qubit Characterization

Qubit Decoherence

Qubit Energy Relaxation Ramsey Experiment
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Number Splitting
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Dephasing with Cavity Drive

N =Ty/K
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